• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Determinar um delta

[Limite] Determinar um delta

Mensagempor caiofisico » Sáb Ago 20, 2011 22:38

opa, tenho uma dúvida que ainda não consegui sanar
é para determinar um delta>0 para todo epsilon dado

tal que se 0<|x-a| < \delta então |f(x) - L| <\epsilon

\lim_{x\rightarrow1} \left(x{}^{2} - 5 \right) = -4

onde
\epsilon = 0,01

não consegui entender a explicação do livro, estou no momento tendo as primeiras aulas de calculo 1
se alguém puder me dar uma ajuda eu agradeço muito
caiofisico
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Ago 20, 2011 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Limite] Determinar um delta

Mensagempor LuizAquino » Dom Ago 21, 2011 21:58

caiofisico escreveu:(...) não consegui entender a explicação do livro (...)

O que exatamente você não entendeu na explicação?

caiofisico escreveu:(...) estou no momento tendo as primeiras aulas de calculo 1 (...)

Talvez você se interesse por dois canais no YouTube:
http://www.youtube.com/nerckie
http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limite] Determinar um delta

Mensagempor caiofisico » Dom Ago 21, 2011 22:47

basicamente o que eu não entendi foi o lance do módulo na equação modular, eu posso por exemplo dar a resposta do delta digamos que seja 0,01/| x+1| ? resumindo posso deixar o módulo?
caiofisico
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Ago 20, 2011 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Limite] Determinar um delta

Mensagempor LuizAquino » Seg Ago 22, 2011 08:43

caiofisico escreveu:basicamente o que eu não entendi foi o lance do módulo na equação modular

Bem, na verdade não há uma equação modular, mas sim uma inequação modular.

caiofisico escreveu:eu posso por exemplo dar a resposta do delta digamos que seja 0,01/| x+1| ? resumindo posso deixar o módulo?

Não pode! Isso porque o delta deve ficar em função apenas do valor de épsilon. Perceba que do modo que você escreveu o delta está em função de épsilon e de x.

Veja se o tópico abaixo lhe dá uma ideia de como fazer:
Demonstração de limites
viewtopic.php?f=120&t=4149
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limite] Determinar um delta

Mensagempor caiofisico » Seg Ago 22, 2011 19:00

era exatamente a minha dúvida, na verdade o ponto mesmo era na inequação modular, vou dar uma revisada nessa matéria.
Valeu ai pela ajuda, ate a próxima :D
caiofisico
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Ago 20, 2011 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.