• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada: Livro Stewart

Derivada: Livro Stewart

Mensagempor leandro_aur » Sáb Ago 13, 2011 16:14

Galera, bom dia.
Eu não estou conseguindo provar o que pede aqui no livro. Será que alguém poderia dar uma olhada?

(Stewart - Cálculo 2 volume 6 pág 899, Exercício 23)

Se z=xy+x{e}^{y/x} , mostre que x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=xy+z.

Será que alguém poderia me ajudar?

Abraços
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: Derivada: Livro Stewart

Mensagempor LuizAquino » Sáb Ago 13, 2011 20:39

Muito provavelmente você está se atrapalhando com as derivadas parciais.

Envie a sua resolução para que possamos identificar o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada: Livro Stewart

Mensagempor leandro_aur » Sáb Ago 13, 2011 20:50

Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: Derivada: Livro Stewart

Mensagempor LuizAquino » Sáb Ago 13, 2011 21:23

leandro_aur escreveu:Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.

Não há inconsistência no exercício.

Temos que:
\frac{\partial z}{\partial x} =  y + e^{y/x} - \frac{y}{x}e^{y/x} \Rightarrow x\frac{\partial z}{\partial x} =  xy + xe^{y/x} - ye^{y/x}

\frac{\partial z}{\partial y} =  x + e^{y/x} \Rightarrow y\frac{\partial z}{\partial y} =  xy + ye^{y/x}

Somando as duas últimas equações:

x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} =  xy + xe^{y/x} + xy \Rightarrow x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + z
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: