• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada: Livro Stewart

Derivada: Livro Stewart

Mensagempor leandro_aur » Sáb Ago 13, 2011 16:14

Galera, bom dia.
Eu não estou conseguindo provar o que pede aqui no livro. Será que alguém poderia dar uma olhada?

(Stewart - Cálculo 2 volume 6 pág 899, Exercício 23)

Se z=xy+x{e}^{y/x} , mostre que x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=xy+z.

Será que alguém poderia me ajudar?

Abraços
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: Derivada: Livro Stewart

Mensagempor LuizAquino » Sáb Ago 13, 2011 20:39

Muito provavelmente você está se atrapalhando com as derivadas parciais.

Envie a sua resolução para que possamos identificar o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada: Livro Stewart

Mensagempor leandro_aur » Sáb Ago 13, 2011 20:50

Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: Derivada: Livro Stewart

Mensagempor LuizAquino » Sáb Ago 13, 2011 21:23

leandro_aur escreveu:Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.

Não há inconsistência no exercício.

Temos que:
\frac{\partial z}{\partial x} =  y + e^{y/x} - \frac{y}{x}e^{y/x} \Rightarrow x\frac{\partial z}{\partial x} =  xy + xe^{y/x} - ye^{y/x}

\frac{\partial z}{\partial y} =  x + e^{y/x} \Rightarrow y\frac{\partial z}{\partial y} =  xy + ye^{y/x}

Somando as duas últimas equações:

x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} =  xy + xe^{y/x} + xy \Rightarrow x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + z
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.