• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Ago 02, 2011 03:10

Não consigo resolver este exercício de limite de função composta.

\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}


Alguém poderia dar uma dica por onde começar?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 09:17

Olá Claudin,

Tente resolver conforme este aqui

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 16:07

Já tentei de várias formas
Sendo: u=\sqrt[3]{3x+5} com 3x=u-5\Rightarrowx=\frac{u-5}{3}

Tentei racionalizando também, mas não consegui.

Estou errando principalmente, pois no numerador seria 3x dentro da raiz, e no numerador seria um x², ai na hora de substituir os valores estou errando.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 17:15

Olá Claudin,

Uma forma seria reescrever da seguinte formar
\lim_{x\rightarrow1}\frac{(\sqrt[3]{3x+5}-\sqrt[3]{8})}{x^2-1}.\frac{(\sqrt[3]{(3x+5)^2}+\sqrt[3]{3x+5}\sqrt[3]{8}+\sqrt[3]{8^2})}{(\sqrt[3]{(3x+5)^2}+\sqrt[3]{3x+5}\sqrt[3]{8}+\sqrt[3]{8^2})}

Assim temos,
\lim_{x\rightarrow1}\frac{3\cancel{(x-1)}}{\cancel{(x-1)}(x+1)(\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4)}, pois x\neq 1

Logo,
\lim_{x\rightarrow1}\frac{3}{(x+1)(\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4)}=\frac{3}{2.(4+2.2+4)}=\frac{3}{2.12}=\boxed{\frac{1}{8}}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 17:24

Mas quando aplica-se a racionalização não era pra ficar assim?

\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}.\frac{\sqrt[3]{3x+5}+2}{\sqrt[3]{3x+5}+2}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 17:39

Outra forma,

Temos,
\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}

Façamos o seguinte
u=\sqrt[3]{3x+5},logo x=\frac{u^3-5}{3} como x\to 1 entãou\to2, pois u=\sqrt[3]{3.1+5}=2

Assim temos,
\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}

\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{(x-1)(x+1)}=\lim_{u\rightarrow2}\frac{u-2}{(\frac{u^3-5}{3}-1)(\frac{u^3-5}{3}+1)}

\lim_{u\rightarrow2}\frac{9(u-2)}{(u^3-8)(u^3-2)}

Fazendo,
u^3-8=(u-2)(u^2+2u+4)

Temos,
\lim_{u\rightarrow2}\frac{9\cancel{(u-2)}}{\cancel{(u-2)}(u^2+2u+4)(u^3-2)},pois u\neq 2

\lim_{u\rightarrow2}\frac{9}{(u^2+2u+4)(u^3-2)}=\frac{9}{12.6}=\boxed{\frac{1}{8}}

Mas quando aplica-se a racionalização não era pra ficar assim?
\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}.\frac{\sqrt[3]{3x+5}+2}{\sqrt[3]{3x+5}+2}


Não.

Tente mostrar que:
x-y=(\sqrt[3]{x}-\sqrt[3]{y})(\sqrt[3]{x^2}+\sqrt[3]{x.y}+\sqrt[3]{y^2})

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 18:06

Você racionalizou aplicando o produto notável (a-b)^3. Somente, por ter uma raiz cúbica no exercício correto?
Se fosse uma raiz quadrada poderia racionalizar sem aplicação de produto notável, como fiz na ultima mensagem deste tópico ?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 18:13

FilipeCaceres escreveu:Outra forma,
\lim_{u\rightarrow2}\frac{9(u-2)}{(u^3-8)(u^3-2)}


Não compreendi como apareceu este 9, no numerador.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?