por Claudin » Ter Ago 02, 2011 03:10
Não consigo resolver este exercício de limite de função composta.
![\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1} \lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}](/latexrender/pictures/c5639b0a0ec0dd236176a49e0742a581.png)
Alguém poderia dar uma dica por onde começar?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FilipeCaceres » Ter Ago 02, 2011 09:17
Olá Claudin,
Tente resolver conforme este
aquiAbraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Claudin » Ter Ago 02, 2011 16:07
Já tentei de várias formas
Sendo:
![u=\sqrt[3]{3x+5} u=\sqrt[3]{3x+5}](/latexrender/pictures/283e5d88295698af82474b4f9433c690.png)
com

Tentei racionalizando também, mas não consegui.
Estou errando principalmente, pois no numerador seria 3x dentro da raiz, e no numerador seria um x², ai na hora de substituir os valores estou errando.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FilipeCaceres » Ter Ago 02, 2011 17:15
Olá Claudin,
Uma forma seria reescrever da seguinte formar
![\lim_{x\rightarrow1}\frac{(\sqrt[3]{3x+5}-\sqrt[3]{8})}{x^2-1}.\frac{(\sqrt[3]{(3x+5)^2}+\sqrt[3]{3x+5}\sqrt[3]{8}+\sqrt[3]{8^2})}{(\sqrt[3]{(3x+5)^2}+\sqrt[3]{3x+5}\sqrt[3]{8}+\sqrt[3]{8^2})} \lim_{x\rightarrow1}\frac{(\sqrt[3]{3x+5}-\sqrt[3]{8})}{x^2-1}.\frac{(\sqrt[3]{(3x+5)^2}+\sqrt[3]{3x+5}\sqrt[3]{8}+\sqrt[3]{8^2})}{(\sqrt[3]{(3x+5)^2}+\sqrt[3]{3x+5}\sqrt[3]{8}+\sqrt[3]{8^2})}](/latexrender/pictures/8b3f5209cf758a1fcc69ec14a1ac5159.png)
Assim temos,
![\lim_{x\rightarrow1}\frac{3\cancel{(x-1)}}{\cancel{(x-1)}(x+1)(\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4)} \lim_{x\rightarrow1}\frac{3\cancel{(x-1)}}{\cancel{(x-1)}(x+1)(\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4)}](/latexrender/pictures/34b2b9530a240f73dc63c94c6661286d.png)
, pois

Logo,
![\lim_{x\rightarrow1}\frac{3}{(x+1)(\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4)}=\frac{3}{2.(4+2.2+4)}=\frac{3}{2.12}=\boxed{\frac{1}{8}} \lim_{x\rightarrow1}\frac{3}{(x+1)(\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4)}=\frac{3}{2.(4+2.2+4)}=\frac{3}{2.12}=\boxed{\frac{1}{8}}](/latexrender/pictures/c0a1117c399920bbeaf5e97f2264dfe5.png)
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Claudin » Ter Ago 02, 2011 17:24
Mas quando aplica-se a racionalização não era pra ficar assim?
![\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}.\frac{\sqrt[3]{3x+5}+2}{\sqrt[3]{3x+5}+2} \lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}.\frac{\sqrt[3]{3x+5}+2}{\sqrt[3]{3x+5}+2}](/latexrender/pictures/90d2231393dbdf925fe07af9f0453206.png)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FilipeCaceres » Ter Ago 02, 2011 17:39
Outra forma,
Temos,
![\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1} \lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}](/latexrender/pictures/c5639b0a0ec0dd236176a49e0742a581.png)
Façamos o seguinte
![u=\sqrt[3]{3x+5} u=\sqrt[3]{3x+5}](/latexrender/pictures/283e5d88295698af82474b4f9433c690.png)
,logo

como

então

, pois
Assim temos,
![\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1} \lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}](/latexrender/pictures/c5639b0a0ec0dd236176a49e0742a581.png)
![\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{(x-1)(x+1)}=\lim_{u\rightarrow2}\frac{u-2}{(\frac{u^3-5}{3}-1)(\frac{u^3-5}{3}+1)} \lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{(x-1)(x+1)}=\lim_{u\rightarrow2}\frac{u-2}{(\frac{u^3-5}{3}-1)(\frac{u^3-5}{3}+1)}](/latexrender/pictures/552ecc8a3f528b14f26977ca528b7f25.png)

Fazendo,

Temos,

,pois


Mas quando aplica-se a racionalização não era pra ficar assim?
![\lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}.\frac{\sqrt[3]{3x+5}+2}{\sqrt[3]{3x+5}+2} \lim_{x\rightarrow1}\frac{\sqrt[3]{3x+5}-2}{x^2-1}.\frac{\sqrt[3]{3x+5}+2}{\sqrt[3]{3x+5}+2}](/latexrender/pictures/90d2231393dbdf925fe07af9f0453206.png)
Não.
Tente mostrar que:
![x-y=(\sqrt[3]{x}-\sqrt[3]{y})(\sqrt[3]{x^2}+\sqrt[3]{x.y}+\sqrt[3]{y^2}) x-y=(\sqrt[3]{x}-\sqrt[3]{y})(\sqrt[3]{x^2}+\sqrt[3]{x.y}+\sqrt[3]{y^2})](/latexrender/pictures/5a889a89fed7c380ac8eb40dc19c75e0.png)
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Claudin » Ter Ago 02, 2011 18:06
Você racionalizou aplicando o produto notável

. Somente, por ter uma raiz cúbica no exercício correto?
Se fosse uma raiz quadrada poderia racionalizar sem aplicação de produto notável, como fiz na ultima mensagem
deste tópico ?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Ter Ago 02, 2011 18:13
FilipeCaceres escreveu:Outra forma,

Não compreendi como apareceu este 9, no numerador.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6483 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4565 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4861 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7043 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4271 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.