• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Qui Jul 28, 2011 17:08

Livro Guidorizzi Vol 1

Página 85

Exercício 3

Dada a função f(x)=\frac{x^2-3x+2}{x-1}, verifique que \lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x). Pergunta-se: f é contínua em 1? Por Quê?

De acordo com meus cálculos encontrei \lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= -1

Ou seja, se os limites laterais pela esquerda e pela direita são iguais, determinei, que a função é contínua.

O que no gabarito esta dizendo o contrário.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Jul 28, 2011 18:37

Claudin escreveu:De acordo com meus cálculos encontrei \lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= -1

Ou seja, se os limites laterais pela esquerda e pela direita são iguais, determinei, que a função é contínua.


Apenas ter limites laterais iguais quando x se aproxima de 1 não implica que a função seja contínua em 1. Basta você analisar a definição de função contínua para entender isso.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jul 28, 2011 19:49

LuizAquino escreveu:Apenas ter limites laterais iguais quando x se aproxima de 1 não implica que a função seja contínua em 1. Basta você analisar a definição de função contínua para entender isso.


Então para ser uma função contínua teria que ser assim:
\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= 1

Correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Jul 28, 2011 20:27

Claudin escreveu:Então para ser uma função contínua teria que ser assim:
\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= 1
Correto?


Errado.

Conforme dito no outro tópico (Limite), a função f é contínua em 1 se acontecer que:

\lim_{x\to 1} f(x) = f(1)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jul 28, 2011 21:06

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 02:04

Analisando novamente o exercício Luiz Aquino, observei que na função:

f(x)=\frac{x^2-3x+2}{x-1}

Aplicando o f(1) normalmente resultaria em uma indeterminação.
f(1)=\frac{x^2-3x+2}{x-1}= \frac{0}{0}

Mas o modo correto seria:

f(1)=\frac{x^2-3x+2}{x-1}\Rightarrow \frac{(x-1)(x-2)}{(x-1)}= \frac{(x-2)}{1}= -1

O que iria resultar em:

\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)=f(1)

Substituindo valores:

\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)=-1

Após calcular os limites laterais pela esquerda e pela direita obtive:

\lim_{x\rightarrow1^{+}}f(x)=-1 e \lim_{x\rightarrow1^{-}}f(x)=-1


Ou seja, seria uma expressão correta, utilizando f(1)=-1.

Poderia, explicar onde estou errando?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 02:08

Com base nos cálculos acima posso afirmar que o limite existe.

\lim_{x\rightarrow1}\frac{x^2-3x+2}{x-1}= -1

E automaticamente, com base nos cálculos acima, também pensei que a função seria contínua. Detalhe onde eu errei e explique-me a resposta correta. Obrigado.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sex Jul 29, 2011 09:29

Claudin escreveu:(...)

Mas o modo correto seria:

f(1)=\frac{x^2-3x+2}{x-1}\Rightarrow \frac{(x-1)(x-2)}{(x-1)}= \frac{(x-2)}{1}= -1

(...)

Poderia, explicar onde estou errando?


Exatamente nesse passo está o erro!

Só é possível simplificar os termos (x - 1) quando x for diferente de 1! Acontece que você simplificou esses termos e em seguida colocou x como 1.

Perceba que em outras palavras você está cometendo o seguinte erro: \frac{0\cdot (-1)}{0} = -1 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 11:58

Mas se não for desse modo. Aplicando f(1) resultaria em uma indeterminação \frac{0}{0}

Isso que eu não compreendi, por isso fiz desse modo.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sex Jul 29, 2011 12:16

Claudin escreveu:Mas se não for desse modo. Aplicando f(1) resultaria em uma indeterminação \frac{0}{0}


Você não pode calcular f(1), pois o domínio da função f é \mathbb{R}-\{1\} .

Ou seja, x = 1 não faz parte do domínio de f. Desse modo, f(1) não existe.

Essa função tem esse domínio devido a presença do termo (x - 1) no denominador.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 29, 2011 12:20

Claudinho,

Analisando o limite da função em x=1

\lim_{x\rightarrow{1}^{+}}=\lim_{x\rightarrow{1}^{-}}

Porém, não existe f(1)

Sabendo disso, já podemos afirmar que há uma descontinuidade!
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 12:23

Compreendi Luiz e Fábio

Mas o fato de possuir limites laterais iguais não interfere na descontinuidade, certo?

Outra pergunta seria, então em questões de continuidade eu devo analisar primeiro se existe o ponto, certo?
Para depois analisar os limites laterais pela esquerda e pela direita?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 29, 2011 12:25

Lembrando que para a função ser contínua, temos que ter as seguintes situações:

1) \exists f({x}_{0})

2) \exists \lim_{x\rightarrow{x}_{0}}f(x)

3) \lim_{x\rightarrow{x}_{0}}f(x)=f({x}_{0})
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 12:27

ok. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 29, 2011 12:31

Claudin escreveu:Compreendi Luiz e Fábio

Mas o fato de possuir limites laterais iguais não interfere na descontinuidade, certo?



Intefere. Se os limites laterais existirem e forem iguais, a função tera descontinuidade removível.
Caso contrário, será essencial!
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sáb Jul 30, 2011 03:53

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59