• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Qui Jul 28, 2011 17:08

Livro Guidorizzi Vol 1

Página 85

Exercício 3

Dada a função f(x)=\frac{x^2-3x+2}{x-1}, verifique que \lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x). Pergunta-se: f é contínua em 1? Por Quê?

De acordo com meus cálculos encontrei \lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= -1

Ou seja, se os limites laterais pela esquerda e pela direita são iguais, determinei, que a função é contínua.

O que no gabarito esta dizendo o contrário.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Jul 28, 2011 18:37

Claudin escreveu:De acordo com meus cálculos encontrei \lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= -1

Ou seja, se os limites laterais pela esquerda e pela direita são iguais, determinei, que a função é contínua.


Apenas ter limites laterais iguais quando x se aproxima de 1 não implica que a função seja contínua em 1. Basta você analisar a definição de função contínua para entender isso.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jul 28, 2011 19:49

LuizAquino escreveu:Apenas ter limites laterais iguais quando x se aproxima de 1 não implica que a função seja contínua em 1. Basta você analisar a definição de função contínua para entender isso.


Então para ser uma função contínua teria que ser assim:
\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= 1

Correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Jul 28, 2011 20:27

Claudin escreveu:Então para ser uma função contínua teria que ser assim:
\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)= 1
Correto?


Errado.

Conforme dito no outro tópico (Limite), a função f é contínua em 1 se acontecer que:

\lim_{x\to 1} f(x) = f(1)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jul 28, 2011 21:06

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 02:04

Analisando novamente o exercício Luiz Aquino, observei que na função:

f(x)=\frac{x^2-3x+2}{x-1}

Aplicando o f(1) normalmente resultaria em uma indeterminação.
f(1)=\frac{x^2-3x+2}{x-1}= \frac{0}{0}

Mas o modo correto seria:

f(1)=\frac{x^2-3x+2}{x-1}\Rightarrow \frac{(x-1)(x-2)}{(x-1)}= \frac{(x-2)}{1}= -1

O que iria resultar em:

\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)=f(1)

Substituindo valores:

\lim_{x\rightarrow1^{+}}f(x)=\lim_{x\rightarrow1^{-}}f(x)=-1

Após calcular os limites laterais pela esquerda e pela direita obtive:

\lim_{x\rightarrow1^{+}}f(x)=-1 e \lim_{x\rightarrow1^{-}}f(x)=-1


Ou seja, seria uma expressão correta, utilizando f(1)=-1.

Poderia, explicar onde estou errando?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 02:08

Com base nos cálculos acima posso afirmar que o limite existe.

\lim_{x\rightarrow1}\frac{x^2-3x+2}{x-1}= -1

E automaticamente, com base nos cálculos acima, também pensei que a função seria contínua. Detalhe onde eu errei e explique-me a resposta correta. Obrigado.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sex Jul 29, 2011 09:29

Claudin escreveu:(...)

Mas o modo correto seria:

f(1)=\frac{x^2-3x+2}{x-1}\Rightarrow \frac{(x-1)(x-2)}{(x-1)}= \frac{(x-2)}{1}= -1

(...)

Poderia, explicar onde estou errando?


Exatamente nesse passo está o erro!

Só é possível simplificar os termos (x - 1) quando x for diferente de 1! Acontece que você simplificou esses termos e em seguida colocou x como 1.

Perceba que em outras palavras você está cometendo o seguinte erro: \frac{0\cdot (-1)}{0} = -1 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 11:58

Mas se não for desse modo. Aplicando f(1) resultaria em uma indeterminação \frac{0}{0}

Isso que eu não compreendi, por isso fiz desse modo.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sex Jul 29, 2011 12:16

Claudin escreveu:Mas se não for desse modo. Aplicando f(1) resultaria em uma indeterminação \frac{0}{0}


Você não pode calcular f(1), pois o domínio da função f é \mathbb{R}-\{1\} .

Ou seja, x = 1 não faz parte do domínio de f. Desse modo, f(1) não existe.

Essa função tem esse domínio devido a presença do termo (x - 1) no denominador.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 29, 2011 12:20

Claudinho,

Analisando o limite da função em x=1

\lim_{x\rightarrow{1}^{+}}=\lim_{x\rightarrow{1}^{-}}

Porém, não existe f(1)

Sabendo disso, já podemos afirmar que há uma descontinuidade!
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 12:23

Compreendi Luiz e Fábio

Mas o fato de possuir limites laterais iguais não interfere na descontinuidade, certo?

Outra pergunta seria, então em questões de continuidade eu devo analisar primeiro se existe o ponto, certo?
Para depois analisar os limites laterais pela esquerda e pela direita?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 29, 2011 12:25

Lembrando que para a função ser contínua, temos que ter as seguintes situações:

1) \exists f({x}_{0})

2) \exists \lim_{x\rightarrow{x}_{0}}f(x)

3) \lim_{x\rightarrow{x}_{0}}f(x)=f({x}_{0})
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 29, 2011 12:27

ok. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 29, 2011 12:31

Claudin escreveu:Compreendi Luiz e Fábio

Mas o fato de possuir limites laterais iguais não interfere na descontinuidade, certo?



Intefere. Se os limites laterais existirem e forem iguais, a função tera descontinuidade removível.
Caso contrário, será essencial!
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sáb Jul 30, 2011 03:53

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}