• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[triângulo / segmento] Ajuda em mais uma do colegio naval...

[triângulo / segmento] Ajuda em mais uma do colegio naval...

Mensagempor Joan » Sáb Jul 23, 2011 13:18

Seja ABC um triângulo com lados AB=15, AC=12 e BC=18. Seja P um ponto sobre o lado AC, tal que PC=3AP. Tomando Q sobre BC, entre B e C, tal que a área do quadrilátero APQB seja igual a área do triangulo PQC, qual será o valor de BQ?

Gente so consegui fazer o desenho e noa raciocino mais nada...
ajudem me... por favor.
Anexos
questão 9.GIF
questão 9.GIF (4.63 KiB) Exibido 4412 vezes
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor m0x0 » Sáb Jul 23, 2011 21:29

Começa por igualar a área do trapézio à área do triângulo, uma vez que sabes que são iguais:



Atriangulo=\frac{b*h}{2}

No trapézio, a base maior do trapézio é B=AB=15, a menor é b=PQ e a altura é h=AP=3

Temos:

No triângulo, tens a base que é b=PC=9 e a altura, como é um triângulo rectângulo, h=PQ

Temos: Atriangulo=\frac{9*PQ}{2}

Então: \frac{9*PQ}{2}=\frac{45+3PQ}{2} então PQ=\frac{45}{6}

Com o valor de PQ acho que já consegues finalizar o exercício.

Espero ter ajudado.
m0x0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Jul 21, 2011 15:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor Joan » Dom Jul 24, 2011 14:37

Nao consegui desse geito amigo...

Axei uma otra resolução desse mesmo exercicio... porém nao entendi o raciocinio, se algume puder ajudar , estarei-lhe grato...

segue a figura...

e os calculos que a pessoa usou:

\frac{2*9*x*sen\alpha}{2} = \frac{12*18*sen\alpha}{2} \Rightarrow xsen\alpha = 12sen\alpha \Rightarrow x=12

BQ = 18-12 \Rightarrow BQ = 6

obs: Eu fiz do geito que o amigo me mostrou pelas areas, so que deu aproximado e nao exato... e deste modo parece mais rapido e curto... é bom para estudo aprender de outros meios...

obs2= O alpha esta subtituindo o "&" que coloquei na figura..

desde já grato a todos que se despoem a ajudar....
Anexos
QUESTÃO 9B.GIF
QUESTÃO 9B.GIF (6.04 KiB) Exibido 4376 vezes
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor LuizAquino » Dom Jul 24, 2011 20:20

m0x0 escreveu:Começa por igualar a área do trapézio à área do triângulo, uma vez que sabes que são iguais:


O quadrilátero APQB não é um trapézio. Note que PQ não é paralelo a AB.

Essas conclusões são consequências de duas informações:

(i) PC = 3AP. Portanto, a razão entre PC e AC é 3/4.
(ii) A área de PQC é a metade da área de ABC. Portanto, a razão entre essas áreas é 1/2.

De (i) e (ii) segue que PQ não é paralelo a AB, pois se fossem os triângulos PQC e ABC deveriam ser semelhantes, mas isso não pode ocorrer já que a razão entre suas áreas é 1/2 e a razão entre os seus lados seria 3/4. Para que eles fossem semelhantes a razão entre seus lados nesse caso deveria ser \sqrt{\frac{1}{2}} .

Joan escreveu:e os calculos que a pessoa usou:

\frac{2*9*x*sen\alpha}{2} = \frac{12*18*sen\alpha}{2} \Rightarrow xsen\alpha = 12sen\alpha \Rightarrow x=12

BQ = 18-12 \Rightarrow BQ = 6


Considere a figura abaixo.
QUESTÃO 9B.GIF
QUESTÃO 9B.GIF (2.73 KiB) Exibido 4364 vezes


Pelos dados do exercício, sabemos que a área de PQC é a metade da área de ABC.

A área de ABC é dada por \frac{18H_1}{2}. Mas, note que \textrm{sen}\,\hat{C} = \frac{H_1}{12} .

Por outro lado, a área de PQC é dada por \frac{xH_2}{2}. Mas, note que \textrm{sen}\,\hat{C} = \frac{H_2}{9} .

Como temos que \frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) , vamos poder escrever que:

\frac{2\cdot 9\cdot x \cdot \textrm{sen}\,\hat{C}}{2} = \frac{12\cdot 18 \cdot \textrm{sen}\,\hat{C}}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda em mais uma do colegio naval...

Mensagempor Joan » Seg Jul 25, 2011 13:43

Só nao entendi essa parte:

Como temos que \frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) , vamos poder escrever que:

\frac{2\cdot 9\cdot x \cdot \textrm{sen}\,\hat{C}}{2} = \frac{12\cdot 18 \cdot \textrm{sen}\,\hat{C}}{2}
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor LuizAquino » Seg Jul 25, 2011 15:41

Isole H_1 e H_2 nas relações \textrm{sen}\,\hat{C} = \frac{H_1}{12} e \textrm{sen}\,\hat{C} = \frac{H_2}{9}.

Em seguida, substitua essas incógnitas na equação \frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) .

Por fim, perceba que o 2 que está dividindo o segundo membro pode passar multiplicando o primeiro. Ou seja, temos que:

\frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) \Rightarrow \frac{2xH_2}{2} = \frac{18H_1}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda em mais uma do colegio naval...

Mensagempor Joan » Seg Jul 25, 2011 16:11

Obrigado Luiz aquino, obrigado pela santa paciência(pois confesso que nem eu teria a mesma paciencia comigo mesmo), obrigado ao amigo moxo tbm, oq importa é a boa intençaõ. vlw. sabedoria em dobro pra vcs.
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D