• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[triângulo / segmento] Ajuda em mais uma do colegio naval...

[triângulo / segmento] Ajuda em mais uma do colegio naval...

Mensagempor Joan » Sáb Jul 23, 2011 13:18

Seja ABC um triângulo com lados AB=15, AC=12 e BC=18. Seja P um ponto sobre o lado AC, tal que PC=3AP. Tomando Q sobre BC, entre B e C, tal que a área do quadrilátero APQB seja igual a área do triangulo PQC, qual será o valor de BQ?

Gente so consegui fazer o desenho e noa raciocino mais nada...
ajudem me... por favor.
Anexos
questão 9.GIF
questão 9.GIF (4.63 KiB) Exibido 4674 vezes
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor m0x0 » Sáb Jul 23, 2011 21:29

Começa por igualar a área do trapézio à área do triângulo, uma vez que sabes que são iguais:



Atriangulo=\frac{b*h}{2}

No trapézio, a base maior do trapézio é B=AB=15, a menor é b=PQ e a altura é h=AP=3

Temos:

No triângulo, tens a base que é b=PC=9 e a altura, como é um triângulo rectângulo, h=PQ

Temos: Atriangulo=\frac{9*PQ}{2}

Então: \frac{9*PQ}{2}=\frac{45+3PQ}{2} então PQ=\frac{45}{6}

Com o valor de PQ acho que já consegues finalizar o exercício.

Espero ter ajudado.
m0x0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Jul 21, 2011 15:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor Joan » Dom Jul 24, 2011 14:37

Nao consegui desse geito amigo...

Axei uma otra resolução desse mesmo exercicio... porém nao entendi o raciocinio, se algume puder ajudar , estarei-lhe grato...

segue a figura...

e os calculos que a pessoa usou:

\frac{2*9*x*sen\alpha}{2} = \frac{12*18*sen\alpha}{2} \Rightarrow xsen\alpha = 12sen\alpha \Rightarrow x=12

BQ = 18-12 \Rightarrow BQ = 6

obs: Eu fiz do geito que o amigo me mostrou pelas areas, so que deu aproximado e nao exato... e deste modo parece mais rapido e curto... é bom para estudo aprender de outros meios...

obs2= O alpha esta subtituindo o "&" que coloquei na figura..

desde já grato a todos que se despoem a ajudar....
Anexos
QUESTÃO 9B.GIF
QUESTÃO 9B.GIF (6.04 KiB) Exibido 4638 vezes
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor LuizAquino » Dom Jul 24, 2011 20:20

m0x0 escreveu:Começa por igualar a área do trapézio à área do triângulo, uma vez que sabes que são iguais:


O quadrilátero APQB não é um trapézio. Note que PQ não é paralelo a AB.

Essas conclusões são consequências de duas informações:

(i) PC = 3AP. Portanto, a razão entre PC e AC é 3/4.
(ii) A área de PQC é a metade da área de ABC. Portanto, a razão entre essas áreas é 1/2.

De (i) e (ii) segue que PQ não é paralelo a AB, pois se fossem os triângulos PQC e ABC deveriam ser semelhantes, mas isso não pode ocorrer já que a razão entre suas áreas é 1/2 e a razão entre os seus lados seria 3/4. Para que eles fossem semelhantes a razão entre seus lados nesse caso deveria ser \sqrt{\frac{1}{2}} .

Joan escreveu:e os calculos que a pessoa usou:

\frac{2*9*x*sen\alpha}{2} = \frac{12*18*sen\alpha}{2} \Rightarrow xsen\alpha = 12sen\alpha \Rightarrow x=12

BQ = 18-12 \Rightarrow BQ = 6


Considere a figura abaixo.
QUESTÃO 9B.GIF
QUESTÃO 9B.GIF (2.73 KiB) Exibido 4626 vezes


Pelos dados do exercício, sabemos que a área de PQC é a metade da área de ABC.

A área de ABC é dada por \frac{18H_1}{2}. Mas, note que \textrm{sen}\,\hat{C} = \frac{H_1}{12} .

Por outro lado, a área de PQC é dada por \frac{xH_2}{2}. Mas, note que \textrm{sen}\,\hat{C} = \frac{H_2}{9} .

Como temos que \frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) , vamos poder escrever que:

\frac{2\cdot 9\cdot x \cdot \textrm{sen}\,\hat{C}}{2} = \frac{12\cdot 18 \cdot \textrm{sen}\,\hat{C}}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda em mais uma do colegio naval...

Mensagempor Joan » Seg Jul 25, 2011 13:43

Só nao entendi essa parte:

Como temos que \frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) , vamos poder escrever que:

\frac{2\cdot 9\cdot x \cdot \textrm{sen}\,\hat{C}}{2} = \frac{12\cdot 18 \cdot \textrm{sen}\,\hat{C}}{2}
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor LuizAquino » Seg Jul 25, 2011 15:41

Isole H_1 e H_2 nas relações \textrm{sen}\,\hat{C} = \frac{H_1}{12} e \textrm{sen}\,\hat{C} = \frac{H_2}{9}.

Em seguida, substitua essas incógnitas na equação \frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) .

Por fim, perceba que o 2 que está dividindo o segundo membro pode passar multiplicando o primeiro. Ou seja, temos que:

\frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) \Rightarrow \frac{2xH_2}{2} = \frac{18H_1}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda em mais uma do colegio naval...

Mensagempor Joan » Seg Jul 25, 2011 16:11

Obrigado Luiz aquino, obrigado pela santa paciência(pois confesso que nem eu teria a mesma paciencia comigo mesmo), obrigado ao amigo moxo tbm, oq importa é a boa intençaõ. vlw. sabedoria em dobro pra vcs.
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?