• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[triângulo / segmento] Ajuda em mais uma do colegio naval...

[triângulo / segmento] Ajuda em mais uma do colegio naval...

Mensagempor Joan » Sáb Jul 23, 2011 13:18

Seja ABC um triângulo com lados AB=15, AC=12 e BC=18. Seja P um ponto sobre o lado AC, tal que PC=3AP. Tomando Q sobre BC, entre B e C, tal que a área do quadrilátero APQB seja igual a área do triangulo PQC, qual será o valor de BQ?

Gente so consegui fazer o desenho e noa raciocino mais nada...
ajudem me... por favor.
Anexos
questão 9.GIF
questão 9.GIF (4.63 KiB) Exibido 4408 vezes
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor m0x0 » Sáb Jul 23, 2011 21:29

Começa por igualar a área do trapézio à área do triângulo, uma vez que sabes que são iguais:



Atriangulo=\frac{b*h}{2}

No trapézio, a base maior do trapézio é B=AB=15, a menor é b=PQ e a altura é h=AP=3

Temos:

No triângulo, tens a base que é b=PC=9 e a altura, como é um triângulo rectângulo, h=PQ

Temos: Atriangulo=\frac{9*PQ}{2}

Então: \frac{9*PQ}{2}=\frac{45+3PQ}{2} então PQ=\frac{45}{6}

Com o valor de PQ acho que já consegues finalizar o exercício.

Espero ter ajudado.
m0x0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Jul 21, 2011 15:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor Joan » Dom Jul 24, 2011 14:37

Nao consegui desse geito amigo...

Axei uma otra resolução desse mesmo exercicio... porém nao entendi o raciocinio, se algume puder ajudar , estarei-lhe grato...

segue a figura...

e os calculos que a pessoa usou:

\frac{2*9*x*sen\alpha}{2} = \frac{12*18*sen\alpha}{2} \Rightarrow xsen\alpha = 12sen\alpha \Rightarrow x=12

BQ = 18-12 \Rightarrow BQ = 6

obs: Eu fiz do geito que o amigo me mostrou pelas areas, so que deu aproximado e nao exato... e deste modo parece mais rapido e curto... é bom para estudo aprender de outros meios...

obs2= O alpha esta subtituindo o "&" que coloquei na figura..

desde já grato a todos que se despoem a ajudar....
Anexos
QUESTÃO 9B.GIF
QUESTÃO 9B.GIF (6.04 KiB) Exibido 4372 vezes
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor LuizAquino » Dom Jul 24, 2011 20:20

m0x0 escreveu:Começa por igualar a área do trapézio à área do triângulo, uma vez que sabes que são iguais:


O quadrilátero APQB não é um trapézio. Note que PQ não é paralelo a AB.

Essas conclusões são consequências de duas informações:

(i) PC = 3AP. Portanto, a razão entre PC e AC é 3/4.
(ii) A área de PQC é a metade da área de ABC. Portanto, a razão entre essas áreas é 1/2.

De (i) e (ii) segue que PQ não é paralelo a AB, pois se fossem os triângulos PQC e ABC deveriam ser semelhantes, mas isso não pode ocorrer já que a razão entre suas áreas é 1/2 e a razão entre os seus lados seria 3/4. Para que eles fossem semelhantes a razão entre seus lados nesse caso deveria ser \sqrt{\frac{1}{2}} .

Joan escreveu:e os calculos que a pessoa usou:

\frac{2*9*x*sen\alpha}{2} = \frac{12*18*sen\alpha}{2} \Rightarrow xsen\alpha = 12sen\alpha \Rightarrow x=12

BQ = 18-12 \Rightarrow BQ = 6


Considere a figura abaixo.
QUESTÃO 9B.GIF
QUESTÃO 9B.GIF (2.73 KiB) Exibido 4360 vezes


Pelos dados do exercício, sabemos que a área de PQC é a metade da área de ABC.

A área de ABC é dada por \frac{18H_1}{2}. Mas, note que \textrm{sen}\,\hat{C} = \frac{H_1}{12} .

Por outro lado, a área de PQC é dada por \frac{xH_2}{2}. Mas, note que \textrm{sen}\,\hat{C} = \frac{H_2}{9} .

Como temos que \frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) , vamos poder escrever que:

\frac{2\cdot 9\cdot x \cdot \textrm{sen}\,\hat{C}}{2} = \frac{12\cdot 18 \cdot \textrm{sen}\,\hat{C}}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda em mais uma do colegio naval...

Mensagempor Joan » Seg Jul 25, 2011 13:43

Só nao entendi essa parte:

Como temos que \frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) , vamos poder escrever que:

\frac{2\cdot 9\cdot x \cdot \textrm{sen}\,\hat{C}}{2} = \frac{12\cdot 18 \cdot \textrm{sen}\,\hat{C}}{2}
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em mais uma do colegio naval...

Mensagempor LuizAquino » Seg Jul 25, 2011 15:41

Isole H_1 e H_2 nas relações \textrm{sen}\,\hat{C} = \frac{H_1}{12} e \textrm{sen}\,\hat{C} = \frac{H_2}{9}.

Em seguida, substitua essas incógnitas na equação \frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) .

Por fim, perceba que o 2 que está dividindo o segundo membro pode passar multiplicando o primeiro. Ou seja, temos que:

\frac{xH_2}{2} = \frac{1}{2}\left(\frac{18H_1}{2}\right) \Rightarrow \frac{2xH_2}{2} = \frac{18H_1}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda em mais uma do colegio naval...

Mensagempor Joan » Seg Jul 25, 2011 16:11

Obrigado Luiz aquino, obrigado pela santa paciência(pois confesso que nem eu teria a mesma paciencia comigo mesmo), obrigado ao amigo moxo tbm, oq importa é a boa intençaõ. vlw. sabedoria em dobro pra vcs.
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.