por Ice » Dom Jul 24, 2011 18:06
Olá.
É a minha primeira dúvida por aqui mas esta está complicada para mim.
Estou a efectuar o estudo da seguinte função:

Já consegui calcular:
- o dominio como

\{0}
- uma assimptota vertical em

- a derivada de

e os respectivos zeros/raizes
- os limites

,

,

e

No entanto agora estou com problemas em calcular os zeros/raizes de

.
Intuitivamente sei que existe um zero e já confirmei traçando o gráfico mas ao fazer as contas não estou a conseguir isolar o

depois de chegar ao seguinte estado:

Obrigado pela atenção.
-
Ice
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jul 24, 2011 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informáica
- Andamento: cursando
por LuizAquino » Dom Jul 24, 2011 21:02
Ice escreveu:Intuitivamente sei que existe um zero e já confirmei traçando o gráfico mas ao fazer as contas não estou a conseguir isolar o x depois de chegar ao seguinte estado:

Esse tipo de equação é chamada de transcendental. Não há uma forma analítica de resolvê-la. Para solucioná-la é necessário usar alguma técnica numérica, como por exemplo o
Método de Newton.
Vale lembrar que no estudo da função pode ser suficiente apenas identificar aproximadamente onde está a raiz, sem necessariamente calculá-la exatamente.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Ice » Dom Jul 24, 2011 21:14
Obrigado pela resposta!
Sendo assim, o melhor que devo conseguir é utilizar a intuição e o Teorema de Bolzano-Cauchy para provar que existe uma raiz num determinado intervalo.
-
Ice
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jul 24, 2011 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informáica
- Andamento: cursando
por LuizAquino » Dom Jul 24, 2011 21:30
Ice escreveu:Sendo assim, o melhor que devo conseguir é utilizar a intuição e o Teorema de Bolzano-Cauchy para provar que existe uma raiz num determinado intervalo.
Sim.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Estudo da função
por Harzeus » Seg Jan 10, 2011 13:58
- 1 Respostas
- 1076 Exibições
- Última mensagem por Neperiano

Qui Out 27, 2011 15:27
Funções
-
- Função ( Estudo do sinal )
por clara » Dom Jun 21, 2009 20:55
- 1 Respostas
- 5164 Exibições
- Última mensagem por Molina

Seg Jun 22, 2009 12:57
Funções
-
- Estudo da [continuidade] de uma função
por Teh_eng » Qui Mai 03, 2012 13:43
- 1 Respostas
- 1267 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 14:52
Cálculo: Limites, Derivadas e Integrais
-
- Estudo de uma parabola de uma função do 2º grau
por gomusalie » Qui Out 27, 2011 15:53
- 1 Respostas
- 2337 Exibições
- Última mensagem por angieluis

Qui Out 27, 2011 19:14
Funções
-
- [Estudo de sinal dessa função]
por wilsonfilho0 » Ter Jun 14, 2016 17:06
- 1 Respostas
- 2283 Exibições
- Última mensagem por vitor_jo

Dom Jul 10, 2016 04:53
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.