• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo de uma Função Logaritmica

Estudo de uma Função Logaritmica

Mensagempor Ice » Dom Jul 24, 2011 18:06

Olá.

É a minha primeira dúvida por aqui mas esta está complicada para mim.

Estou a efectuar o estudo da seguinte função:

f(x) = ln(x^2 +1) - \frac{1}{x}

Já consegui calcular:

- o dominio como \Re\{0}
- uma assimptota vertical em x=0
- a derivada de f e os respectivos zeros/raizes
- os limites \lim_{x\rightarrow{0}^{-}}, \lim_{x\rightarrow{0}^{+}}, \lim_{x\rightarrow-\infty} e \lim_{x\rightarrow+\infty}

No entanto agora estou com problemas em calcular os zeros/raizes de f(x).
Intuitivamente sei que existe um zero e já confirmei traçando o gráfico mas ao fazer as contas não estou a conseguir isolar o x depois de chegar ao seguinte estado:

{e}^{\frac{1}{x}}=x^2+1

Obrigado pela atenção.
Ice
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jul 24, 2011 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Informáica
Andamento: cursando

Re: Estudo de uma Função Logaritmica

Mensagempor LuizAquino » Dom Jul 24, 2011 21:02

Ice escreveu:Intuitivamente sei que existe um zero e já confirmei traçando o gráfico mas ao fazer as contas não estou a conseguir isolar o x depois de chegar ao seguinte estado:

{e}^{\frac{1}{x}}=x^2+1


Esse tipo de equação é chamada de transcendental. Não há uma forma analítica de resolvê-la. Para solucioná-la é necessário usar alguma técnica numérica, como por exemplo o Método de Newton.

Vale lembrar que no estudo da função pode ser suficiente apenas identificar aproximadamente onde está a raiz, sem necessariamente calculá-la exatamente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Estudo de uma Função Logaritmica

Mensagempor Ice » Dom Jul 24, 2011 21:14

Obrigado pela resposta!
Sendo assim, o melhor que devo conseguir é utilizar a intuição e o Teorema de Bolzano-Cauchy para provar que existe uma raiz num determinado intervalo.
Ice
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jul 24, 2011 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Informáica
Andamento: cursando

Re: Estudo de uma Função Logaritmica

Mensagempor LuizAquino » Dom Jul 24, 2011 21:30

Ice escreveu:Sendo assim, o melhor que devo conseguir é utilizar a intuição e o Teorema de Bolzano-Cauchy para provar que existe uma raiz num determinado intervalo.

Sim.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59