• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Jul 19, 2011 19:49

\lim_{x\rightarrow4}\frac{\sqrt[]{x}-2}{x-4}

Talvez estou errando nos cálculos. Mas sem utilizar L'Hospital, utilizando métodos algébricos eu só cheguei em indeterminação \frac{0}{0}.

Cheguei a multiplicar o numerador e o denominador por x+4 e encontrei \frac{4}{0}

Depois tentei multiplicando o numerador e o numerador por \sqrt[]{x}+2 e encontrei \frac{0}{0}

Alguém explica este exercício?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Jul 19, 2011 21:02

Olá Claudin,

Observe que x-4=(\sqrt{x}-2)(\sqrt{x}+2)

Agora tente resolver, caso tenha dificuldades, poste novamente.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 00:23

Ficaria assim Filipe?

\lim_{x\rightarrow4}\frac{\sqrt[]{x}-2}{x-4}

\lim_{x\rightarrow4}\frac{\sqrt[]{x}-2}{x-4}. \frac{\sqrt[]{x}+2}{\sqrt[]{x}+2}

\lim_{x\rightarrow4}\frac{1}{\sqrt[]{x}+2}\Rightarrow \frac{1}{\sqrt[]{4}+2}= \frac{1}{4}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 00:23

Só pra constar, ajudas desse modo são muito mais construtivas Filipe

Muito obrigado. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qua Jul 20, 2011 09:23

Claudin escreveu:Só pra constar, ajudas desse modo são muito mais construtivas Filipe

E note que ele não resolveu o exercício! Ele apenas lhe deu uma dica para você mesmo conseguir fazer (o que é muito melhor para o seu aprendizado).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor giulioaltoe » Qua Jul 20, 2011 09:24

voce também poderia fazer por mudança de variaveis! colocando {x=y^2} assim o y ia tender 2 lim_{y\to2}\frac{(y-2)}{(y-2)(y+2)} = \lim_{y\to2}\frac{1}{y+2} = \frac{1}{4}
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 11:12

Mas foi uma dica, em que, utilizou a teoria e parte da prática, não foi uma dica "seca". E foi muito proveitoso para meus estudos.

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qua Jul 20, 2011 11:31

Claudin escreveu:Mas foi uma dica, em que, utilizou a teoria e parte da prática, não foi uma dica "seca". E foi muito proveitoso para meus estudos.


Apenas por curiosidade, na sua opinião, qual é a diferença entre essa dica e a que foi dada, por exemplo, no tópico abaixo?

Re: Limite
viewtopic.php?f=120&t=5290&#p17976
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 11:33

São equivalentes. :y:
Mas em alguns casos mais complexos nem com a dica o aluno que possui a dúvida chega ao resultado e quando retorna ao tópico ele recebe mais dicas, em vez da solução para ajudar nos estudos.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.