• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Jul 19, 2011 19:49

\lim_{x\rightarrow4}\frac{\sqrt[]{x}-2}{x-4}

Talvez estou errando nos cálculos. Mas sem utilizar L'Hospital, utilizando métodos algébricos eu só cheguei em indeterminação \frac{0}{0}.

Cheguei a multiplicar o numerador e o denominador por x+4 e encontrei \frac{4}{0}

Depois tentei multiplicando o numerador e o numerador por \sqrt[]{x}+2 e encontrei \frac{0}{0}

Alguém explica este exercício?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Jul 19, 2011 21:02

Olá Claudin,

Observe que x-4=(\sqrt{x}-2)(\sqrt{x}+2)

Agora tente resolver, caso tenha dificuldades, poste novamente.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 00:23

Ficaria assim Filipe?

\lim_{x\rightarrow4}\frac{\sqrt[]{x}-2}{x-4}

\lim_{x\rightarrow4}\frac{\sqrt[]{x}-2}{x-4}. \frac{\sqrt[]{x}+2}{\sqrt[]{x}+2}

\lim_{x\rightarrow4}\frac{1}{\sqrt[]{x}+2}\Rightarrow \frac{1}{\sqrt[]{4}+2}= \frac{1}{4}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 00:23

Só pra constar, ajudas desse modo são muito mais construtivas Filipe

Muito obrigado. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qua Jul 20, 2011 09:23

Claudin escreveu:Só pra constar, ajudas desse modo são muito mais construtivas Filipe

E note que ele não resolveu o exercício! Ele apenas lhe deu uma dica para você mesmo conseguir fazer (o que é muito melhor para o seu aprendizado).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor giulioaltoe » Qua Jul 20, 2011 09:24

voce também poderia fazer por mudança de variaveis! colocando {x=y^2} assim o y ia tender 2 lim_{y\to2}\frac{(y-2)}{(y-2)(y+2)} = \lim_{y\to2}\frac{1}{y+2} = \frac{1}{4}
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 11:12

Mas foi uma dica, em que, utilizou a teoria e parte da prática, não foi uma dica "seca". E foi muito proveitoso para meus estudos.

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qua Jul 20, 2011 11:31

Claudin escreveu:Mas foi uma dica, em que, utilizou a teoria e parte da prática, não foi uma dica "seca". E foi muito proveitoso para meus estudos.


Apenas por curiosidade, na sua opinião, qual é a diferença entre essa dica e a que foi dada, por exemplo, no tópico abaixo?

Re: Limite
viewtopic.php?f=120&t=5290&#p17976
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 11:33

São equivalentes. :y:
Mas em alguns casos mais complexos nem com a dica o aluno que possui a dúvida chega ao resultado e quando retorna ao tópico ele recebe mais dicas, em vez da solução para ajudar nos estudos.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}