por Filipe Ricardo Rosa » Dom Jul 03, 2011 19:26
Pessoal peço que me ajudem neste problema conforme o enunciado abaixo:
Determine a reta tangente (ou retas tangentes) à parábola

e que passa pelo ponto (2,9).
Primeiramente eu tentei resolver do seguinte jeito:
Calculando o coeficiente angular
m =

Jogando na fórmula da reta tangente




Porém como se trata de uma parábola, existe outra reta tangente, que eu gostaria de ajuda para encontra-la.
-
Filipe Ricardo Rosa
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Jul 03, 2011 18:49
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por joaofonseca » Dom Jul 03, 2011 22:22
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Seg Jul 04, 2011 06:42
Imagino que ele não queira dizer que o ponto

pertence ao gráfico, mas que o objetivo seja encontrar retas tangentes ao gráfico e que também passem por esse ponto.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Filipe Ricardo Rosa » Seg Jul 04, 2011 07:59
Realmente, eu não tinha compreendido o enunciado, mas acredito que o Marcelo tem razão quanto ao objetivo.
Gostaria de pedir ajuda para quem puder solucionar este problema.
-
Filipe Ricardo Rosa
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Jul 03, 2011 18:49
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por Fabio Cabral » Seg Jul 04, 2011 09:45
A função derivada que você encontrou:

O ponto que ele quer que você verifique a reta tangente

Logo, o coeficiente angular seria

" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por Filipe Ricardo Rosa » Seg Jul 04, 2011 19:36
Caro fábio como ficaria a minha equação da reta tangente à parábola?
-
Filipe Ricardo Rosa
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Jul 03, 2011 18:49
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por MarceloFantini » Seg Jul 04, 2011 19:54
Fabio, note que

significa a reta tangente a parábola no ponto 2, que não necessariamente é a reta tangente que também passa por

. Ainda não tive tempo para pensar na questão, mas é bom evitar desentendimentos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Fabio Cabral » Seg Jul 04, 2011 20:09
Eu também imaginei isso, Marcelo. Mas fica aí um pontapé inicial pra gente tentar chegar numa resolução.
Estou correndo atrás também.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por LuizAquino » Qua Jul 06, 2011 10:21
Primeiro, note que a reta tangente a qualquer ponto da parábola toca essa parábola em apenas um ponto. Isso não acontece em outras curvas. Por exemplo, a reta tangente ao gráfico de f(x) = x³ no ponto (1, 1) também toca o ponto (-2, -8).
Dito isso, observe que a reta tangente a

no ponto (
k,
f(
k)), e que passa pelo ponto (2, 9), é dada por:

Ou seja, temos a equação dessa reta dada por:

Essa reta deve tocar apenas um ponto da parábola
f. Isso significa que o valor de
k é tal que a equação a seguir só tem uma única solução para
x:

Arrumando essa equação, obtemos:

Para que essa equação tenha apenas uma solução para
x, é necessário que o seu discriminante (isto é, seu

) seja 0. Com essa informação você determina os possíveis valores de
k e consequentemente as possíveis retas tangentes.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analítica] Retas Tangentes e Normais à Parábola
por IlgssonBraga » Ter Out 29, 2013 15:46
- 0 Respostas
- 1366 Exibições
- Última mensagem por IlgssonBraga

Ter Out 29, 2013 15:46
Geometria Analítica
-
- retas tangentes
por kvothe » Sex Mai 06, 2011 17:48
- 1 Respostas
- 1730 Exibições
- Última mensagem por LuizAquino

Sex Mai 06, 2011 18:49
Cálculo: Limites, Derivadas e Integrais
-
- Retas tangentes ao gráfico
por Marcos_Mecatronica » Sáb Abr 27, 2013 19:58
- 1 Respostas
- 1706 Exibições
- Última mensagem por young_jedi

Dom Abr 28, 2013 12:16
Cálculo: Limites, Derivadas e Integrais
-
- Circulos Tangentes a Duas Retas
por nakagumahissao » Qua Abr 04, 2012 20:13
- 2 Respostas
- 3330 Exibições
- Última mensagem por nakagumahissao

Ter Mai 01, 2012 16:40
Sequências
-
- grafico com duas retas tangentes tocando uma circunferencia
por sonek182 » Qua Ago 19, 2009 17:51
- 0 Respostas
- 1658 Exibições
- Última mensagem por sonek182

Qua Ago 19, 2009 17:51
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.