• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Qui Jun 30, 2011 16:31

\lim_{x\rightarrow1}\frac{\sqrt[]{x}-1}{x-1}

Gostaria de ver a resolução deste exercício pela definição!

Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qui Jun 30, 2011 16:55

O resultado correto seria \frac{1}{2}

Mas o exercício pede resolução pela definição ai não estou conseguindo chegar no resultado!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Qui Jun 30, 2011 19:50

Pela definição você precisava ter dito que \lim_{x \to 1} \frac{\sqrt{x} -1}{x -1} = \frac{1}{2}, pois precisamos disto para mostrar que existe \delta tal que dado \varepsilon >0 podemos encontrar um delta como função de epsilon que satisfaça as desigualdades:

|x-1| < \delta \Rightarrow \left| \frac{\sqrt{x} -1}{x-1} - \frac{1}{2} \right| < \varepsilon
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jun 30, 2011 20:28

Olhei enunciado errado
Seria resolver limite normalmente
sem utilizar l'Hopital!
Alguém ajuda, só consegui utilizando L'Hopital
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Qui Jun 30, 2011 21:40

Tente assim, multiplique e divida por \sqrt{x} +1, cairá em um produto notável que será terá como resultado o denominador. Trabalhe com isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jun 30, 2011 21:50

Já tinha feito isso mas errei em conta.
Refiz os cálculos e consegui!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 01, 2011 03:21

\lim_{x\rightarrow1}\frac{\sqrt[]{x}-1}{x-1}

\lim_{x\rightarrow1}\frac{\sqrt[]{x}-1}{x-1}.\frac{\sqrt[]{x}+1}{\sqrt[]{x}+1}

\lim_{x\rightarrow1}\frac{(x-1)}{(x-1)(\sqrt[]{x}+1)}

\lim_{x\rightarrow1}\frac{1}{\sqrt[]{x}+1}= \frac{1}{1+1}= \frac{1}{2}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 01, 2011 11:04

Claudinho, basta multiplicar pelo conjugado. Não há complicação alguma.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)