• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Qui Jun 30, 2011 16:31

\lim_{x\rightarrow1}\frac{\sqrt[]{x}-1}{x-1}

Gostaria de ver a resolução deste exercício pela definição!

Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qui Jun 30, 2011 16:55

O resultado correto seria \frac{1}{2}

Mas o exercício pede resolução pela definição ai não estou conseguindo chegar no resultado!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Qui Jun 30, 2011 19:50

Pela definição você precisava ter dito que \lim_{x \to 1} \frac{\sqrt{x} -1}{x -1} = \frac{1}{2}, pois precisamos disto para mostrar que existe \delta tal que dado \varepsilon >0 podemos encontrar um delta como função de epsilon que satisfaça as desigualdades:

|x-1| < \delta \Rightarrow \left| \frac{\sqrt{x} -1}{x-1} - \frac{1}{2} \right| < \varepsilon
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jun 30, 2011 20:28

Olhei enunciado errado
Seria resolver limite normalmente
sem utilizar l'Hopital!
Alguém ajuda, só consegui utilizando L'Hopital
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor MarceloFantini » Qui Jun 30, 2011 21:40

Tente assim, multiplique e divida por \sqrt{x} +1, cairá em um produto notável que será terá como resultado o denominador. Trabalhe com isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jun 30, 2011 21:50

Já tinha feito isso mas errei em conta.
Refiz os cálculos e consegui!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 01, 2011 03:21

\lim_{x\rightarrow1}\frac{\sqrt[]{x}-1}{x-1}

\lim_{x\rightarrow1}\frac{\sqrt[]{x}-1}{x-1}.\frac{\sqrt[]{x}+1}{\sqrt[]{x}+1}

\lim_{x\rightarrow1}\frac{(x-1)}{(x-1)(\sqrt[]{x}+1)}

\lim_{x\rightarrow1}\frac{1}{\sqrt[]{x}+1}= \frac{1}{1+1}= \frac{1}{2}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 01, 2011 11:04

Claudinho, basta multiplicar pelo conjugado. Não há complicação alguma.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.