• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Achar derivada

Achar derivada

Mensagempor Kathleen » Dom Jun 26, 2011 19:20

Boa noite,

Vocês poderiam me ajudar nesta questão?
Y= (x²-2)² + Ln(x³)

Somente consegui resolver até:
y= 2(2x-2) + Ln (3x²)
y= 4(2x) + Ln (9x)

Grata!
Kathleen
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Jun 26, 2011 19:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração de Empresas
Andamento: cursando

Re: Achar derivada

Mensagempor Neperiano » Dom Jun 26, 2011 19:55

Ola

Não entendi muito bem o que queria, acho que é a derivada, então fica assim

y= x^4 - 4x^2 + 4 + Ln(x^3)

y' = 4x^3 - 8x + (3x^2)/x^3

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Achar derivada

Mensagempor MarceloFantini » Dom Jun 26, 2011 20:11

Kathleen, qual é o enunciado da questão? Não sabemos o que você quer.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Achar derivada

Mensagempor Kathleen » Dom Jun 26, 2011 21:28

Olá,
O enunciado é:
Calcule a seguinte derivada.

Grata!
Kathleen
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Jun 26, 2011 19:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração de Empresas
Andamento: cursando

Re: Achar derivada

Mensagempor MarceloFantini » Dom Jun 26, 2011 21:39

Bom, você tem duas regras da cadeia, devido a composição de funções, logo:

\frac{dy}{dx} = 2(x^2 -2) \cdot 2x + \frac{1}{x^3} \cdot (3x^2) = 4x(x^2 -2) + \frac{3}{x}

Foi meio rápido, quaisquer dúvidas pergunte.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Achar derivada

Mensagempor Neperiano » Dom Jun 26, 2011 21:59

Ola

Só para esclarecer, as duas respostas estão certas a que eu derivei e a que o marcelo derivo, entretanto eu tirei do parenteses e não cortei o do Ln, mas de qualquer forma esta certa, mas o jeito do marcelo é mais prático, ele usa duas vezes a regra da cadeia, enquanto eu só usoi uma vez.

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59