por pedro_s_n » Qui Jun 23, 2011 15:41
Ola
o problema é o seguinte
fazer o grafico de
f (x) =x³-3x²-9x
calculei a primeira derivada
f '(x) 3x²-6x-9
dps disso nao lembro mais
c alguem puder me dar dicas sobre o que fazer agradeço
obg
-
pedro_s_n
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Jun 23, 2011 15:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por pedro_s_n » Sex Jun 24, 2011 15:39
Vi as aulas , me ajudaram mto.
obg
mais ainda estou com duvidas,por exemplo
f(x)=x³-3x²+3
derivo
f '(x)= 3x²-6x
acho o minimo e o maximo reesolvendo a equaçao
x=0,2
estudar o sinal de f(x) e aplicar na parabola.
N~so intendi como se estuda o sinal de uma funçao
-
pedro_s_n
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Jun 23, 2011 15:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por MarceloFantini » Sex Jun 24, 2011 15:49
Cuidado quando for escrever, as raízes são

e

. Quando você disse

eu pensei como se fosse o número decimal

. Agora lembre-se: depois de calcular a primeira derivada, verifique onde a função é crescente e decrescente vendo onde ela é positiva e onde ela é negativa. Em seguida, calcule a segunda derivada e ache os pontos de inflexão e onde ela é côncava ou convexa.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por pedro_s_n » Sex Jun 24, 2011 17:34
dpois de calcular a primeira derivada, verifique onde a função é crescente e decrescente vendo onde ela é positiva e onde ela é negativa.
por que metodo analiso o sinal da f(x),não intendi pelo material que analisei me pesquisas.
E desculpe pela pressa de escrever,tomarei mais cuidado
sauhsushashau
As raizes achadas podem ser consideradas os pontos criticos da funçao?
-
pedro_s_n
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Jun 23, 2011 15:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por MarceloFantini » Sex Jun 24, 2011 17:59
Os pontos onde a derivada é zero são os pontos críticos da função (máximo ou mínimo locais). Agora pegue pontos nos intervalos restantes, e verifique se ela é positiva ou negativa. Um exemplo bem simples, que não é do exercício: vamos supor que a derivada de uma função seja

. Os pontos críticos são zero e dois. Agora resta analisar antes de zero, entre zero e dois e depois de dois. Antes de zero, esse produto é positivo, logo a função é positiva e crescente. Entre zero e dois, esse produto é negativo e portanto a função é decrescente(pois x é positivo porém x-2 é negativo). Depois de 2 volta a ser positivo e a função volta a ser crescente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Gráfico de função trigonométrica-Função seno
por lucassouza » Dom Mai 31, 2015 19:15
- 0 Respostas
- 1788 Exibições
- Última mensagem por lucassouza

Dom Mai 31, 2015 19:15
Trigonometria
-
- grafico de função
por Amparo » Dom Mar 09, 2008 20:22
- 1 Respostas
- 2452 Exibições
- Última mensagem por admin

Qui Mar 13, 2008 12:56
Funções
-
- Grafico de uma função
por DSR » Qui Ago 27, 2009 21:36
- 3 Respostas
- 2617 Exibições
- Última mensagem por Elcioschin

Sáb Ago 29, 2009 01:05
Álgebra Elementar
-
- Função e gráfico
por rafacosme » Qua Jun 16, 2010 21:31
- 3 Respostas
- 2063 Exibições
- Última mensagem por MarceloFantini

Qui Jun 17, 2010 02:03
Funções
-
- grafico da funçao
por maria cleide » Qui Mai 12, 2011 17:14
- 1 Respostas
- 1325 Exibições
- Última mensagem por carlosalesouza

Qui Mai 12, 2011 17:23
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.