Ola
o problema é o seguinte
fazer o grafico de
f (x) =x³-3x²-9x
calculei a primeira derivada
f '(x) 3x²-6x-9
dps disso nao lembro mais
c alguem puder me dar dicas sobre o que fazer agradeço
obg




e
. Quando você disse
eu pensei como se fosse o número decimal
. Agora lembre-se: depois de calcular a primeira derivada, verifique onde a função é crescente e decrescente vendo onde ela é positiva e onde ela é negativa. Em seguida, calcule a segunda derivada e ache os pontos de inflexão e onde ela é côncava ou convexa.


. Os pontos críticos são zero e dois. Agora resta analisar antes de zero, entre zero e dois e depois de dois. Antes de zero, esse produto é positivo, logo a função é positiva e crescente. Entre zero e dois, esse produto é negativo e portanto a função é decrescente(pois x é positivo porém x-2 é negativo). Depois de 2 volta a ser positivo e a função volta a ser crescente.

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)