• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Infinitos. Ajuda

Limites Infinitos. Ajuda

Mensagempor valeuleo » Qua Jun 22, 2011 12:39

Ajudem-me a calcular os limites infinitos da seguinte função: f(x)=\frac{{t}^{2}}{1+{t}^{2}}

Nos meus cálculos obtive 0, mas no gráfico é 1 tanto pela esquerda como pela direita. Podem me ajudar?

Grato
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Limites Infinitos. Ajuda

Mensagempor LuizAquino » Qua Jun 22, 2011 12:41

Envie a sua resolução para que possamos identificar o erro.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limites Infinitos. Ajuda

Mensagempor valeuleo » Qui Jun 23, 2011 11:56

Consegui resolver quando dividi o numerador e o denominador por t². Grato
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Limites Infinitos. Ajuda

Mensagempor Claudin » Qui Jun 23, 2011 14:52

Obtive 1 em meus cálculos.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limites Infinitos. Ajuda

Mensagempor renatav » Dom Jun 26, 2011 22:46

Neste limite, tem-se indeterminacao to tipo infnitito / infinito ou seja, pode aplicar a regra de L'hospital.
Derivando separadamente o numerador e o numerador tempos um novo limite que será equivalente ao primeiro.
Novo limite será 2t / 2t, uma nova indeterminacao do tipo infinito / infinito. É só repetir o processo processo até desaparecer a indeterminacao, no caso logo na proxima derivada.
2/2 = 1
renatav
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 26, 2011 11:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Redes de Comunicacao
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}