• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda nas questões abaixo

Ajuda nas questões abaixo

Mensagempor luizeduardo » Qui Jun 16, 2011 13:22

Gostaria de ajuda nas questões abaixo, tentei algumas estratégias mas mesmo assim não me convenci de minha resolução. Desde já agradeço!!!

1. Mostre que duas funções logarítmicas diferem apenas por uma "homotetia na imagem". Isto é, mostrae que se f e g são funções logarítmicas então existe C real tal que f(x) = Cg(x) para todo x real e positivo. Compare este exercício com o famoso método de "mudança de base".

2. Mostre que duas funções logarítmicas diferem apenas por uma "homotetia no domínio". Isto é, mostrae que se f e g são funções logarítmicas então existe C real tal que f(x) = g(Cx) para todo x real e positivo.
luizeduardo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Abr 24, 2011 12:49
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Ajuda nas questões abaixo

Mensagempor MarceloFantini » Qui Jun 16, 2011 13:36

Quais foram suas tentativas?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda nas questões abaixo

Mensagempor luizeduardo » Sex Jun 17, 2011 10:10

Tentei iniciar pela dica do final da questão, verificar na propriedade de troca de base de logartimo que haveria uma "dica" para me auxiliar a esclarecer a homotetia da imagem, mas infelizmente minhas tentativas não me levaram a uma conclusão satisfatória...

Luiz
luizeduardo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Abr 24, 2011 12:49
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59