por luizeduardo » Qui Jun 16, 2011 13:22
Gostaria de ajuda nas questões abaixo, tentei algumas estratégias mas mesmo assim não me convenci de minha resolução. Desde já agradeço!!!
1. Mostre que duas funções logarítmicas diferem apenas por uma "homotetia na imagem". Isto é, mostrae que se f e g são funções logarítmicas então existe C real tal que f(x) = Cg(x) para todo x real e positivo. Compare este exercício com o famoso método de "mudança de base".
2. Mostre que duas funções logarítmicas diferem apenas por uma "homotetia no domínio". Isto é, mostrae que se f e g são funções logarítmicas então existe C real tal que f(x) = g(Cx) para todo x real e positivo.
-
luizeduardo
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Abr 24, 2011 12:49
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
por MarceloFantini » Qui Jun 16, 2011 13:36
Quais foram suas tentativas?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por luizeduardo » Sex Jun 17, 2011 10:10
Tentei iniciar pela dica do final da questão, verificar na propriedade de troca de base de logartimo que haveria uma "dica" para me auxiliar a esclarecer a homotetia da imagem, mas infelizmente minhas tentativas não me levaram a uma conclusão satisfatória...
Luiz
-
luizeduardo
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Abr 24, 2011 12:49
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda com questões
por Luiz Felipe » Seg Fev 13, 2012 16:20
- 6 Respostas
- 4390 Exibições
- Última mensagem por LuizAquino

Seg Fev 13, 2012 20:25
Geometria Analítica
-
- Ajuda em questões
por abreu_29 » Seg Jan 14, 2013 18:12
- 0 Respostas
- 1136 Exibições
- Última mensagem por abreu_29

Seg Jan 14, 2013 18:12
Matemática Financeira
-
- Ajuda com questões de logaritmos?
por narutocrak » Dom Out 06, 2013 22:55
- 0 Respostas
- 1238 Exibições
- Última mensagem por narutocrak

Dom Out 06, 2013 22:55
Logaritmos
-
- AJUDA QUESTOES, POR FAVOR, OBRIGADO
por aspirantestudante » Dom Jun 13, 2010 02:22
- 6 Respostas
- 6230 Exibições
- Última mensagem por karla_paula

Dom Jun 13, 2010 23:36
Funções
-
- preciso de ajuda nestas questões
por drs1407 » Sex Mai 11, 2012 22:31
- 1 Respostas
- 1216 Exibições
- Última mensagem por MarceloFantini

Sáb Mai 12, 2012 14:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.