
Não consegui chegar a resolução do exercício.
Quem puder ajudar, favor postar a resolução.
Obrigado


.

Claudin escreveu:
Não consegui chegar a resolução do exercício.
Quem puder ajudar, favor postar a resolução.
Obrigado

![\lim_{x\to 2} \frac{x^{-3}-e^{-3x}+\log_{\frac{1}{2}} x}{\ln 13x - x^5 - x^2 + \left(\frac{1}{x}\right)^{\frac{-1}{3}}} = \frac{2^{-3}-e^{-3\cdot 2}+\log_{\frac{1}{2}} 2}{\ln 13\cdot 2 - 2^5 - 2^2 + \left(\frac{1}{2}\right)^{\frac{-1}{3}}} = \frac{-\frac{7}{8} - e^{-6}}{\ln 26 - 36 + \sqrt[3]{2}} \lim_{x\to 2} \frac{x^{-3}-e^{-3x}+\log_{\frac{1}{2}} x}{\ln 13x - x^5 - x^2 + \left(\frac{1}{x}\right)^{\frac{-1}{3}}} = \frac{2^{-3}-e^{-3\cdot 2}+\log_{\frac{1}{2}} 2}{\ln 13\cdot 2 - 2^5 - 2^2 + \left(\frac{1}{2}\right)^{\frac{-1}{3}}} = \frac{-\frac{7}{8} - e^{-6}}{\ln 26 - 36 + \sqrt[3]{2}}](/latexrender/pictures/c242bb0aaeaaf38c998958aa6f32b150.png)


![\sqrt[3]{2} \sqrt[3]{2}](/latexrender/pictures/9a132a1fa0d4f51451f00801ccbfe963.png)
![\sqrt[3]{\frac{1}{2}} \sqrt[3]{\frac{1}{2}}](/latexrender/pictures/6e6f440da4aacca706144efe69411cc1.png)

Claudin escreveu:A resposta final seria essa?

Claudin escreveu:obs: E quando tinha
você colocou como equivalente
Achei que era
, correto?
, ok?

Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)