por Claudin » Qua Mai 18, 2011 21:19
![\lim_{x\rightarrow0}\frac{x}{\sqrt[]{x}} \lim_{x\rightarrow0}\frac{x}{\sqrt[]{x}}](/latexrender/pictures/41d1c6f9cac6aa6e7731c6f6e1f48d03.png)
![\lim_{x\rightarrow0}\frac{x}{\sqrt[]{x}} . \frac{\sqrt[]{x}}{\sqrt[]{x}} \lim_{x\rightarrow0}\frac{x}{\sqrt[]{x}} . \frac{\sqrt[]{x}}{\sqrt[]{x}}](/latexrender/pictures/f39052e533faf1d814aff069e6616660.png)
![\lim_{x\rightarrow0}\frac{x.\sqrt[]{x}}{x} = \frac{\sqrt[]{x}}{0} = 0 \lim_{x\rightarrow0}\frac{x.\sqrt[]{x}}{x} = \frac{\sqrt[]{x}}{0} = 0](/latexrender/pictures/5e4c7fbb8e2ec20882e9e4b1738ceee0.png)
A resolução do exercicio acima esta correta? se a resolução final fosse
a resposta seria

ou

? E se fosse
![\frac{1}{\sqrt[]{x}} \frac{1}{\sqrt[]{x}}](/latexrender/pictures/911233eacfdf6c16c12ac8d1e3dc6824.png)
qual seria a resposta final?
Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Qua Mai 18, 2011 21:26
Claudin, está nítido que você não está sabendo percebe o que está fazendo. Vamos lá:

. Vamos trabalhar como potências:

Note que na sua resolução você surgiu (?) com um zero no denominador e manteve a raíz no numerador, e isso "daria infinito", porém deu zero. É

a variável, é ela que tende a zero.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Claudin » Qua Mai 18, 2011 21:30
![\frac{x.\sqrt[]{x}}{x} = \frac{\sqrt[]{x}}{1} \frac{x.\sqrt[]{x}}{x} = \frac{\sqrt[]{x}}{1}](/latexrender/pictures/d64719a654b11a507a6bd41534b143dd.png)
a resposta seria essa entao?
eu cortei x com x
pois estava multiplicando meu erro so foi em vez de colocar 1 coloquei 0
Nao foi so isso nao?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Qua Mai 18, 2011 21:40
Foi, foi isso sim. Mas dava a entender erros piores. É bom perceber que foi apenas digitação.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Claudin » Qua Mai 18, 2011 21:44
Obrigado pela ajuda Marcelo
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Qui Mai 19, 2011 10:58
Claudin, você tem certeza que esse é o limite que apareceu como exercício?
Esse limite, do jeito que está, não existe nos reais. Isso porque para x aproximando-se de 0 pela esquerda (ou seja, x < 0), temos a raiz de um número negativo aparecendo no denominador.
O correto seria se o exercício pedisse o limite quando x aproxima-se de 0 pela direita (ou seja, x > 0). Isto é, o exercício deveria ser:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Qui Mai 19, 2011 12:31
O exercicio foi esse msm Luiz.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limite] Dúvida limite com raizes
por rqaugusto » Dom Abr 30, 2017 23:23
- 0 Respostas
- 3019 Exibições
- Última mensagem por rqaugusto

Dom Abr 30, 2017 23:23
Cálculo: Limites, Derivadas e Integrais
-
- Limite - Duvida
por Claudin » Qua Mai 18, 2011 18:32
- 3 Respostas
- 2435 Exibições
- Última mensagem por Claudin

Qua Mai 18, 2011 20:45
Cálculo: Limites, Derivadas e Integrais
-
- Duvida - Limite
por Claudin » Qui Mai 19, 2011 09:20
- 5 Respostas
- 2859 Exibições
- Última mensagem por Claudin

Dom Mai 22, 2011 16:19
Cálculo: Limites, Derivadas e Integrais
-
- Duvida - Limite
por Claudin » Sáb Mai 21, 2011 16:17
- 18 Respostas
- 10321 Exibições
- Última mensagem por Claudin

Qui Mai 26, 2011 15:32
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] duvida
por beel » Sáb Set 03, 2011 20:32
- 4 Respostas
- 1767 Exibições
- Última mensagem por beel

Dom Set 04, 2011 15:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.