• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida - Limite

Duvida - Limite

Mensagempor Claudin » Qua Mai 18, 2011 21:19

\lim_{x\rightarrow0}\frac{x}{\sqrt[]{x}}

\lim_{x\rightarrow0}\frac{x}{\sqrt[]{x}} . \frac{\sqrt[]{x}}{\sqrt[]{x}}

\lim_{x\rightarrow0}\frac{x.\sqrt[]{x}}{x} = \frac{\sqrt[]{x}}{0} = 0

A resolução do exercicio acima esta correta? se a resolução final fosse \frac{0}{\sqrt[]{x}}
a resposta seria 0 ou +\infty? E se fosse \frac{1}{\sqrt[]{x}} qual seria a resposta final?

Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Duvida - Limite

Mensagempor MarceloFantini » Qua Mai 18, 2011 21:26

Claudin, está nítido que você não está sabendo percebe o que está fazendo. Vamos lá: \lim_{x \to 0} \frac{x}{\sqrt{x}}. Vamos trabalhar como potências:

\lim_{x \to 0} \frac{x}{x^{\frac{1}{2}}} = \lim_{x \to 0} x^{1 - \frac{1}{2}} = \lim_{x \to 0} x^{\frac{1}{2}} = 0

Note que na sua resolução você surgiu (?) com um zero no denominador e manteve a raíz no numerador, e isso "daria infinito", porém deu zero. É x a variável, é ela que tende a zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida - Limite

Mensagempor Claudin » Qua Mai 18, 2011 21:30

\frac{x.\sqrt[]{x}}{x} = \frac{\sqrt[]{x}}{1}

a resposta seria essa entao?
eu cortei x com x
pois estava multiplicando meu erro so foi em vez de colocar 1 coloquei 0
Nao foi so isso nao?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Duvida - Limite

Mensagempor MarceloFantini » Qua Mai 18, 2011 21:40

Foi, foi isso sim. Mas dava a entender erros piores. É bom perceber que foi apenas digitação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida - Limite

Mensagempor Claudin » Qua Mai 18, 2011 21:44

Obrigado pela ajuda Marcelo
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Duvida - Limite

Mensagempor LuizAquino » Qui Mai 19, 2011 10:58

Claudin, você tem certeza que esse é o limite que apareceu como exercício?

Esse limite, do jeito que está, não existe nos reais. Isso porque para x aproximando-se de 0 pela esquerda (ou seja, x < 0), temos a raiz de um número negativo aparecendo no denominador.

O correto seria se o exercício pedisse o limite quando x aproxima-se de 0 pela direita (ou seja, x > 0). Isto é, o exercício deveria ser:

\lim_{x\to 0^+} \frac{x}{\sqrt{x}}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida - Limite

Mensagempor Claudin » Qui Mai 19, 2011 12:31

O exercicio foi esse msm Luiz.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59