• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trapézio

Trapézio

Mensagempor Mi_chelle » Qui Mai 19, 2011 01:30

ABCD é um trapézio retângulo. A semicircunferência de diâmetro AD inscrita no trapézio, tangencia BC em um ponto M. Se AB= 4 cm e CD= 9 cm, calcule a área do trapézio.

Naõ consigo imaginar uma meneira de resolver essa questão.
Mi_chelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Mar 28, 2011 17:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Química
Andamento: formado

Re: Trapézio

Mensagempor FilipeCaceres » Qui Mai 19, 2011 02:38

trapezio.png
trapezio.png (5.46 KiB) Exibido 2864 vezes


Vê se olhando para o desenho você consegue resolver.

Eu encontrei A_t=13\sqrt{14}\,cm^2

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Trapézio

Mensagempor Mi_chelle » Ter Mai 24, 2011 15:37

Obrigada pela ajuda!!!!
Mi_chelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Mar 28, 2011 17:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Química
Andamento: formado

Re: Trapézio

Mensagempor FilipeCaceres » Ter Mai 24, 2011 15:43

Quando você respondeu eu percebi que o meu desenho está errado, o valor correto de MC=9, e com isso não sei que o valor da área que eu lhe passei anteriormente está correto, pois eu não me lembro se quando eu calculei eu usei MC=9 ou se eu fiz conforme está no desenho, mas de qualquer forma para me "redimir" a noite eu postarei a solução.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Trapézio

Mensagempor Mi_chelle » Ter Mai 24, 2011 17:03

Então, eu percebi isso, mas como BM =4, imaginei que MC seria =9. E foi exatamente essa a chave pra a a resolução, vendo a figura e que AB= BM e DC=CM, consegui resolver. A=78cm²
Mais uma vez, obrigada!!
Mi_chelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Seg Mar 28, 2011 17:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Química
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}