por benni » Ter Mai 17, 2011 15:41
Resolva o sistema de equações linear:

.

=
e discuta o significado geométrico do conjunto solução, se exixtir.
-
benni
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Mar 02, 2011 15:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: formado
por carlosalesouza » Ter Mai 17, 2011 17:50
Primeiramente, encontramos a Determinante.
Para isso, reproduzimos as 2 primeiras colunas à direita:

E somamos o produto das diagonais para a direita e subtraímos o das diagonais para a esquerda:

A Determinante é 0...
Substituindo a primeira coluna da matriz pela coluna depois da igualdade, neste caso, 0, 0 e 0, teremos a Dx, substituindo a segunda, teremos Dy e a terceira nos dará Dz...
Com isso, sabemos que

Entretanto, como sabemos que D = 0 e que 0 não é um divisor válido, logo, não existe conjunto solução...
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por MarceloFantini » Ter Mai 17, 2011 19:37
Pelo contrário, o conjunto solução é infinito. Veja que se fizermos

, já temos uma solução. Neste caso, o sistema é possível e indeterminado, pois existem inúmeras soluções.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por carlosalesouza » Qua Mai 18, 2011 00:11
Isso mesmo... rs foi gafe minha... estava saindo quando comecei a responder ao topico e acabei fazendo um serviço mal feito... rs
Depois pensei a respeito e vi meu erro... dai fiquei pensando... tenho que voltar pra casa pra responder certo aquele tópico... rs
O principal erro é que, apesar de D ser 0, que não pode ser divisor, Dx = Dy = Dz = 0, ou seja, teríamos 0/0, que cai em uma indeterminação...
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por benni » Qua Mai 18, 2011 13:00
Obrigado pessoal pela ajuda, mas pensei assim
fiz a matriz aumentada adicionando a coluna do zero e por consequencia qualquer métodode resolução ira resultar em x = 0 , y = 0 e z = 0
como Det(A) = -12
Um sistema linear é homogêneo quando os termos independentes de todas as equações são nulos. Todo sistema linear homogêneo admite pelo menos a solução trivial, que é a solução identicamente nula. Assim, todo sistema linear homogêneo é possível. Este tipo de sistema poderá ser determinado se admitir somente a solução trivial ou indeterminado se admitir outras soluções além da trivial.
agora a analise geometrica,não consegui vizualizar?
-
benni
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Mar 02, 2011 15:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: formado
por carlosalesouza » Qui Mai 19, 2011 09:19
Admitindo um sistema determinado, com as variáveis igual a zero, a solução se posiciona no ponto (0,0,0) que é a origem do plano cartesiano tridimensinal...
- Anexos
-

- Solucao = Origem.png (2.88 KiB) Exibido 8346 vezes
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por MarceloFantini » Qui Mai 19, 2011 18:38
Esta é uma das soluções, mas não explica as outras. Para isto, é necessário saber que

é a equação de um plano, logo, se a única solução é a trivial, isso quer dizer três planos que se interceptam apenas na origem. Outras possibilidades são: três planos que tem uma reta em comum ou na verdade são o mesmo plano.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por arima » Qui Mai 19, 2011 21:29
Eu fiz por esclonamento e fiz em função da variavel z.Deu duas equações e tres incognitas.Chamei z de alfa e as soluçoes ficaram em função de z.Portanto sistema possivel indeterminado com infinitas soluçoes.agora ta dififcil representar no plano pois não sei como trabalhar com winplot.
-
arima
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sáb Out 23, 2010 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por arima » Qui Mai 19, 2011 21:34
Eu fiz por esclonamento e fiz em função da variavel z.Deu duas equações e tres incognitas.Chamei z de alfa e as soluçoes ficaram em função de z.Portanto sistema possivel indeterminado com infinitas soluçoes.agora ta dififcil representar no plano pois não sei como trabalhar com winplot.
-
arima
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sáb Out 23, 2010 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por lanca » Sáb Mai 21, 2011 18:26
Pessoal vc chegaram em algo assim:
y= -2z/7 e x= -1z/14
-
lanca
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Mai 15, 2011 00:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: formado
por lanca » Sáb Mai 21, 2011 22:59
Oi benni!!!
Eu fiz por escalonamento e encontrei após refazer os cálculos que:
y= -2z/7 e x= -3z/7
-
lanca
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Mai 15, 2011 00:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: formado
por arima » Dom Mai 22, 2011 17:33
Eu também fiz assim.
-
arima
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sáb Out 23, 2010 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: cursando
por LuizAquino » Dom Mai 22, 2011 18:19
A matriz ampliada do sistema é:

Façamos por escalonamento.
Primeiro, troque de posição a linha 1 com a linha 3.

Façamos:
linha 2 recebe: (linha 2) - 3*(linha 1)
linha 3 recebe: (linha 3) - 8*(linha 1)

Façamos:
linha 3 recebe: (linha 3) - 3*(linha 2)

Façamos:
linha 1 recebe: 2*(linha 1) + (linha 2)

Logo, o sistema equivalente é:

Geometricamente, isso é a interseção de dois planos que resulta na reta:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [sistema linear homogeneo] Como resolver esse sistema
por amigao » Qua Jul 02, 2014 14:49
- 1 Respostas
- 2921 Exibições
- Última mensagem por Russman

Qua Jul 02, 2014 18:38
Álgebra Linear
-
- [Sistema linear] Sistema linear com constante
por smlspirit » Qui Jul 19, 2012 19:34
- 4 Respostas
- 5282 Exibições
- Última mensagem por Russman

Qui Jul 19, 2012 22:40
Sistemas de Equações
-
- [Sistema Linear] MACK-SP: Sistema de Equações
por ALF » Sex Ago 26, 2011 13:24
- 1 Respostas
- 4313 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 12:57
Sistemas de Equações
-
- Matrix X
por rafaela5523 » Sex Mar 25, 2016 20:56
- 1 Respostas
- 5305 Exibições
- Última mensagem por rafaela5523

Sex Mar 25, 2016 21:17
Matrizes e Determinantes
-
- [Matrix do operador]
por Tathiclau » Sáb Dez 14, 2013 14:37
- 4 Respostas
- 3859 Exibições
- Última mensagem por Tathiclau

Sáb Dez 14, 2013 19:09
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.