por Giles » Qua Out 29, 2008 23:24
Seja
![M = {[{a}_{ij}]}_{nxn} M = {[{a}_{ij}]}_{nxn}](/latexrender/pictures/10509744a774c268fa3ff8e8299b6d2b.png)
uma matriz quadrada de ordem n, onde aij= i + j. Nessas condições, a soma dos elementos da diagonal principal dessa matriz é:
a -) n²
b-) 2n + 2n²
c-) 2n + n²
d-) n² + n
e-) n + 2n²
OBS.:
Soma dos n primeiros termos de uma PA:

Soma dos n primeiros termos de uma PG:

Outra que não consegui resolver:
Considere a matriz A = [2 -1] e uma matriz
![B = [{b}_{ij}] B = [{b}_{ij}]](/latexrender/pictures/c8e53792e5e45c41b0a1935b458435d1.png)
. Se A . B. A = A, então é correto afirmar que a matriz B:
a-)

b-)

c-)

d-)

e-)

Agradeço a atenção!
"As pessoas que vencem nessa vida são aquelas que procuram as circunstâncias de que precisam e quando não as encontram, as criam"
-

Giles
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Dom Out 19, 2008 11:14
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Construção Civil Integr
- Andamento: cursando
por Molina » Qua Out 29, 2008 23:45
Giles escreveu:Seja
![M = {[{a}_{ij}]}_{nxn} M = {[{a}_{ij}]}_{nxn}](/latexrender/pictures/10509744a774c268fa3ff8e8299b6d2b.png)
uma matriz quadrada de ordem n, onde aij= i + j. Nessas condições, a soma dos elementos da diagonal principal dessa matriz é:
a -) n²
b-) 2n + 2n²
c-) 2n + n²
d-) n² + n
e-) n + 2n²
OBS.:
Soma dos n primeiros termos de uma PA:

Soma dos n primeiros termos de uma PG:

A diagonal principal é formada por membros onde i = j.
Ou seja, 1+1, 2+2, 3+3, 4+4, ... , n+n => 2, 4, 6, 8, ... , 2n
Logo a sequencia a cima é uma PA de razão 2.
Usando a fórmula da Soma da PA:

Resposta: letra d
Se nao houve erro nas contas, é isso.
Abraços.
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Giles » Qui Out 30, 2008 00:11
molina escreveu:Giles escreveu:Seja
![M = {[{a}_{ij}]}_{nxn} M = {[{a}_{ij}]}_{nxn}](/latexrender/pictures/10509744a774c268fa3ff8e8299b6d2b.png)
uma matriz quadrada de ordem n, onde aij= i + j. Nessas condições, a soma dos elementos da diagonal principal dessa matriz é:
a -) n²
b-) 2n + 2n²
c-) 2n + n²
d-) n² + n
e-) n + 2n²
OBS.:
Soma dos n primeiros termos de uma PA:

Soma dos n primeiros termos de uma PG:

A diagonal principal é formada por membros onde i = j.
Ou seja, 1+1, 2+2, 3+3, 4+4, ... , n+n => 2, 4, 6, 8, ... , 2n
Logo a sequencia a cima é uma PA de razão 2.
Usando a fórmula da Soma da PA:

Resposta: letra d
Se nao houve erro nas contas, é isso.
Abraços.
Obrigado Molina... Sua resposta está corretíssima! Muito obrigado!
Grande abraço!
Giles.
"As pessoas que vencem nessa vida são aquelas que procuram as circunstâncias de que precisam e quando não as encontram, as criam"
-

Giles
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Dom Out 19, 2008 11:14
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Construção Civil Integr
- Andamento: cursando
por Molina » Qui Out 30, 2008 00:20
Giles, de nada!
Confirme apenas se na segunda atividade é A
(vezes) B
(vezes) A
(igual) A
Abraços e bom estudo

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Giles » Qui Out 30, 2008 00:29
É isso mesmo! (Y)
"As pessoas que vencem nessa vida são aquelas que procuram as circunstâncias de que precisam e quando não as encontram, as criam"
-

Giles
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Dom Out 19, 2008 11:14
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Construção Civil Integr
- Andamento: cursando
por diegodalcol » Qui Nov 13, 2008 23:53
estou com a seginte duvida na soma dessas duas matrizes:

meu resultado foi:

será que fiz certo?
-
diegodalcol
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Mai 22, 2008 13:06
- Área/Curso: Estudante
- Andamento: cursando
por Molina » Sex Nov 14, 2008 01:21
diegodalcol escreveu:estou com a seginte duvida na soma dessas duas matrizes:

meu resultado foi:

será que fiz certo?
Olá Diego.
A primeira matriz é

e a segunda é

, certo?
c(i,j) = a(i,j) + b(i,j)
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Molina » Sex Nov 14, 2008 01:24
diegodalcol escreveu:estou com a seginte duvida na soma dessas duas matrizes:

meu resultado foi:

será que fiz certo?
Olá Diego.
A primeira matriz é

e a segunda é

, certo?
A soma de matrizes só está definida para matrizes de mesma ordem,
e as matrizes a cima nao possuem mesma ordem.
Então nao tem sentido somar uma matriz 1x3 com outra 1x1.
Bom estudo!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Matrizes invertíveis] e matrizes inversas
por JacquesPhilippe » Seg Ago 08, 2011 19:19
- 3 Respostas
- 4918 Exibições
- Última mensagem por LuizAquino

Qui Ago 11, 2011 19:43
Matrizes e Determinantes
-
- [Matrizes] produto de matrizes
por vanessafey » Dom Ago 28, 2011 16:54
- 1 Respostas
- 3440 Exibições
- Última mensagem por MarceloFantini

Dom Ago 28, 2011 17:35
Matrizes e Determinantes
-
- [MATRIZES] Demonstração de matrizes
por farinha99 » Sáb Set 03, 2016 11:56
- 0 Respostas
- 5779 Exibições
- Última mensagem por farinha99

Sáb Set 03, 2016 11:56
Matrizes e Determinantes
-
- matrizes
por luix henrique » Seg Out 13, 2008 15:42
- 1 Respostas
- 9527 Exibições
- Última mensagem por Molina

Seg Out 13, 2008 20:13
Matrizes e Determinantes
-
- Matrizes
por Cleyson007 » Sáb Nov 01, 2008 00:51
- 2 Respostas
- 2914 Exibições
- Última mensagem por Cleyson007

Sex Mai 29, 2009 11:14
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.