• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral com exponencial

Integral com exponencial

Mensagempor suziquim » Ter Mai 10, 2011 18:07

Estou com a resolução de duas integrais, mas não entendi o princípio:

\int_{1}^{2}{e}^{x*y}dx
\left[{e}^{x*y} \right]/y

Mas não entendi porque o resultado é o y como denominador.

E a outra:
\int_{0}^{1}{e}^{x/\sqrt[2]{y}}/{y}^{2}
\sqrt[2]{y}*{e}^{x/\sqrt[2]{y}}

Também não entendi a raiz quadrada de y multiplicando com a exponencial

Gostaria que alguém me explicasse o porquê.
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Integral com exponencial

Mensagempor LuizAquino » Ter Mai 10, 2011 18:22

Para entender essas integrais você precisa ter claro qual é a derivada da função f(x) = e^{kx}, com k uma constante real qualquer.

Note que para derivar essa função é necessário aplicar a regra da cadeia. Por exemplo, fazendo h(u) = e^u e g(x)=kx, temos que:
f(x) = h(g(x)) \Rightarrow f'(x) = h'(g(x))g'(x)

Sabemos que h'(u) = e^u. Desse modo, h'(g(x))  = e^{g(x)} = e^{kx} .

Além disso, temos que g'(x)=k.

Portanto, no final temos que:
f'(x) = ke^{kx}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral com exponencial

Mensagempor suziquim » Qua Mai 11, 2011 11:08

Ok, está entendido.
Obrigada! :)
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)