• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral com exponencial

Integral com exponencial

Mensagempor suziquim » Ter Mai 10, 2011 18:07

Estou com a resolução de duas integrais, mas não entendi o princípio:

\int_{1}^{2}{e}^{x*y}dx
\left[{e}^{x*y} \right]/y

Mas não entendi porque o resultado é o y como denominador.

E a outra:
\int_{0}^{1}{e}^{x/\sqrt[2]{y}}/{y}^{2}
\sqrt[2]{y}*{e}^{x/\sqrt[2]{y}}

Também não entendi a raiz quadrada de y multiplicando com a exponencial

Gostaria que alguém me explicasse o porquê.
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Integral com exponencial

Mensagempor LuizAquino » Ter Mai 10, 2011 18:22

Para entender essas integrais você precisa ter claro qual é a derivada da função f(x) = e^{kx}, com k uma constante real qualquer.

Note que para derivar essa função é necessário aplicar a regra da cadeia. Por exemplo, fazendo h(u) = e^u e g(x)=kx, temos que:
f(x) = h(g(x)) \Rightarrow f'(x) = h'(g(x))g'(x)

Sabemos que h'(u) = e^u. Desse modo, h'(g(x))  = e^{g(x)} = e^{kx} .

Além disso, temos que g'(x)=k.

Portanto, no final temos que:
f'(x) = ke^{kx}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral com exponencial

Mensagempor suziquim » Qua Mai 11, 2011 11:08

Ok, está entendido.
Obrigada! :)
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.