por filduarte » Seg Mai 02, 2011 12:57
Olá, preciso de ajuda. Já quebrei a cabeça mas não consigo resolver este problema. Eu tenho um retângulo com outros retângulos dentro. O retângulo principal gira 15º e eu preciso descobrir a distância do vértice mais distante dos retângulo internos em relação ao retângulo original (antes de ser rotacionado). Segue imagem para facilitar a compreensão:

As variáveis que são conhecidas são:
- x (largura do retângulo principal);
- y (altura do retângulo principal);
- ax (distância no eixo x do vértices do retângulo interno antes da rotação);
- ay (distância no eixo y do vértices do retângulo interno antes da rotação);
- w (largura do retângulo interno);
- h (altura do retângulo interno);
Preciso descobrir bx e by. Já tentei utilizando razões trigonométricas, mas não dá certo.
-
filduarte
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Mai 02, 2011 12:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Desenho Industrial
- Andamento: cursando
por FilipeCaceres » Seg Mai 02, 2011 20:44
Rotacionar os eixos de um ângulo

e escrever as novas coordenadas de C são equivalentes a escrever as coordenadas de C' (vetor rotacionado em

) no sistema original. Observe a figura

- rotacao.png (5.11 KiB) Exibido 2648 vezes
Assim temos,


Assim temos,


Espero que tenha entendido, com isso acho que seja suficiente para você resolver a sua questão.
Qualquer dúvida poste novamente.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por LuizAquino » Seg Mai 02, 2011 22:12
Aplicando a sugestão de
FilipeCaceres, podemos rearrumar o problema original como ilustra a figura abaixo.
Note que no sistema xOy as coordenadas de A são (ax, ay). Além disso, note que no sistema x'Oy' as coordenadas de B também são (ax, ay).
O que você deseja é descobrir as coordenadas de B em relação ao sistema xOy. Suponha que essas coordenadas sejam (k, m).
Substituindo essas informações no sistema de equações indicado, teremos:

Agora, basta você resolver esse sistema para encontrar
k e
m.
Por fim, note que usando a notação da figura original, temos que

e

.
Em seu perfil consta que você é aluno do curso de Desenho Industrial. Esse problema que você quer resolver surgiu em algum projeto que você está trabalhando?
ObservaçãoNa disciplina de Geometria Analítica estudamos a rotação de eixos e a mudança de coordenadas. Eu recomendo que você procure por materiais ou livros dessa disciplina.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por filduarte » Ter Mai 03, 2011 13:56
LuizAquino escreveu:Em seu perfil consta que você é aluno do curso de Desenho Industrial. Esse problema que você quer resolver surgiu em algum projeto que você está trabalhando?
Sim o problema surgiu durante um projeto. O tal retângulo externo que falei é um movieclip do flash e os retângulos menores são fotos. O que eu preciso é descobrir os pontos das fotos que ficam mais perto das extremidades esquerda, direita, superior e inferior. O exemplo que dei foi do ponto mais à direita.
Confesso que não consegui resolver o sistema (tentei pelo método da comparação) e peço a paciência de vocês para me ajudar a resolvê-lo. Para facilitar as coisas vamos assumir que

e

:


Substituindo na segunda equação:

Pois é, mas eu empaco aí. Não me lembro como inverter a equação quando tenho uma divisão de uma equação. Ficaria assim?

-
filduarte
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Mai 02, 2011 12:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Desenho Industrial
- Andamento: cursando
por LuizAquino » Ter Mai 03, 2011 15:50
É mais fácil você resolver o sistema pelo método da soma.
Basta você multiplicar a primeira equação por

e a segunda por

. Somando as duas equações resultantes, você irá determinar m.
Em seguida, basta você multiplicar a primeira equação por

e a segunda por

. Somando as duas equações resultantes, você irá determinar k.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por filduarte » Sex Mai 06, 2011 11:56
Valeu pela ajuda! Consegui resolver. Só não entendi uma coisa:




Aí a soma daria:

Ou seja:

Só que essa expressão estava dando errado, até que percebi que se eu não dividisse por 2,22 ela dava certo. Onde está o meu erro?
Mais uma coisa: não entendi por que você disse que para descobrir k eu precisava multiplicar a primeira equação por cos15º e a segunda por sen15º. Bastou eu substituir o m numa das equações do sistema original e resolvi o problema.
-
filduarte
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Mai 02, 2011 12:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Desenho Industrial
- Andamento: cursando
por LuizAquino » Sex Mai 06, 2011 12:26
Você errou aqui:
0,24897k + 0,258m * 0,066 = 0,258x
-0,24897k + 0,965m * 0,931 = 0,965y
Deveria ficar apenas com:
0,24897k + 0,066m = 0,258x
-0,24897k + 0,931m = 0,965y
Agora, vejamos a resolução usando a minha sugestão.
Primeira parte


Segunda parte


ObservaçãoÉ óbvio que poderíamos ter usado a expressão determinada para m na primeira etapa para determinar o k na segunda etapa. Mas, eu prefiro fazer esse exercício assim, pois as expressões para k e m ficam mais simples.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por filduarte » Sex Mai 06, 2011 12:51
Entendi. Realmente dei mole na hora da multiplicação.
Mais uma vez agradeço pela paciência e pela ajuda!
Abraços!
-
filduarte
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Mai 02, 2011 12:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Desenho Industrial
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- rotação de eixos
por CarolMarques » Sáb Set 01, 2012 19:38
- 4 Respostas
- 3304 Exibições
- Última mensagem por e8group

Dom Set 02, 2012 13:27
Geometria Analítica
-
- volume de sólido por rotação
por hmspriss » Qui Set 23, 2010 11:13
- 1 Respostas
- 2510 Exibições
- Última mensagem por MarceloFantini

Sex Set 24, 2010 01:32
Cálculo: Limites, Derivadas e Integrais
-
- [CONICAS] rotação e translação
por amigao » Sex Jun 28, 2013 19:31
- 1 Respostas
- 1095 Exibições
- Última mensagem por e8group

Sex Jul 12, 2013 12:00
Geometria Analítica
-
- Integrais - Volume por Rotação
por elisafrombrazil » Dom Abr 16, 2017 11:17
- 0 Respostas
- 4719 Exibições
- Última mensagem por elisafrombrazil

Dom Abr 16, 2017 11:17
Cálculo: Limites, Derivadas e Integrais
-
- Rotação-Superficie de Revolução
por DGM » Ter Dez 05, 2017 00:37
- 0 Respostas
- 1692 Exibições
- Última mensagem por DGM

Ter Dez 05, 2017 00:37
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.