• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ponto em comum entre duas funções

Ponto em comum entre duas funções

Mensagempor suziquim » Qui Mai 05, 2011 15:53

{x}^{3}={x}^{0,5}
{x}^{0,5}*({x}^{2,5}-1)=0
x=0
 ou
 {x}^{2,5}=1

Como fica o segundo valor de x?
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Ponto em comum entre duas funções

Mensagempor Abelardo » Qui Mai 05, 2011 16:45

Eu não sei qual é o conjunto universo que a questão trabalha, mas me ''parece'' que, dada a igualdade inicial {x}^{3}={x}^{0,5}, os únicos valores que x pode assumir é zero e um.
Pelo que sei, trabalhando no conjunto do reais, para uma potência ter resultado igual a 1, ela deve ser elevada a zero ou sua base ser 1.

0^3=0^{0,5} \to 0=0
1^3=1^{0,5} \to 1^3=1^{\frac{5}{10}} \to 1^3 = \sqrt[10]{1^5} \to 1=1


Espero que algum amigo do fórum apareça para ver se o que eu disse é válido.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ponto em comum entre duas funções

Mensagempor suziquim » Qui Mai 05, 2011 17:21

Entendi...a minha dúvida estava justamente no x elevado a 2,5, mas realmente o que você escreveu tem sentido.
Obrigada
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59