• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ponto em comum entre duas funções

Ponto em comum entre duas funções

Mensagempor suziquim » Qui Mai 05, 2011 15:53

{x}^{3}={x}^{0,5}
{x}^{0,5}*({x}^{2,5}-1)=0
x=0
 ou
 {x}^{2,5}=1

Como fica o segundo valor de x?
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Ponto em comum entre duas funções

Mensagempor Abelardo » Qui Mai 05, 2011 16:45

Eu não sei qual é o conjunto universo que a questão trabalha, mas me ''parece'' que, dada a igualdade inicial {x}^{3}={x}^{0,5}, os únicos valores que x pode assumir é zero e um.
Pelo que sei, trabalhando no conjunto do reais, para uma potência ter resultado igual a 1, ela deve ser elevada a zero ou sua base ser 1.

0^3=0^{0,5} \to 0=0
1^3=1^{0,5} \to 1^3=1^{\frac{5}{10}} \to 1^3 = \sqrt[10]{1^5} \to 1=1


Espero que algum amigo do fórum apareça para ver se o que eu disse é válido.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ponto em comum entre duas funções

Mensagempor suziquim » Qui Mai 05, 2011 17:21

Entendi...a minha dúvida estava justamente no x elevado a 2,5, mas realmente o que você escreveu tem sentido.
Obrigada
suziquim
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Mai 05, 2011 11:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.