• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria com triângulo

Trigonometria com triângulo

Mensagempor FilipeCaceres » Qui Abr 28, 2011 20:09

Calcule o valor de \theta na figura abaixo.
Figura.jpg

A) 10^\circ
B) 15^\circ
C) 20^\circ
D) 30^\circ
E) 40^\circ

Gabarito: C

Alguém tem alguma dica.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Trigonometria com triângulo

Mensagempor FilipeCaceres » Sex Abr 29, 2011 23:17

Ressuscitando um morto,rsrs
triangulo1.png

Fora de escala.

Vejam o que eu fiz, mas ainda não consegui provar certas coisas, espero que colocando este meu rascunho possa despertar alguma ideia em alguém.

Dados da minha figura.
\alpha=\theta=10
\beta=30
\varsigma+\eta=80 , pois \sigma e \gamma são minhas bissetrizes externas, logo o ângulo \varsigma+\eta=90-\frac{\alpha+\theta}{2}

Minhas bissetrizes externas valem
\sigma=40
\gamma=60

Portanto,
\varsigma=30
\eta=50

É possível encontrar outros ângulos, mas optei postar apenas estes pois os demais são fáceis de se ver.

Alguém teria alguma dica para provar que \overline{ED}=\overline{EF}

Agradeço desde já.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Trigonometria com triângulo

Mensagempor FilipeCaceres » Sáb Abr 30, 2011 22:47

Uma forma de mostrar que \overline{ED}=\overline{EF} seria construir uma cincunferência de raio \overline{ED} desta forma observaríamos que o ponto F perntence a cincunferência, portanto, \overline{ED}=\overline{EF}=R .

Tendo feito isso, temos
\delta =50

Portanto,
\varepsilon =20

Espero que alguém tenha uma forma mais elegante de resolver esta questão.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?