• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida numa funçao definida por ramos

Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 16:54

boa tarde... eu estou cm uma duvida numa funçao definida por ramos que é:

f(x,y) = x^3/(x^2 + y^2) se x > 0 e f(x,y) = x * ln(1+y^2) se x <= 0

Como verifico se a funçao é continua no ponto 0,0
pego no ramo d cima ou d baixo?
Na minha prespectiva deveria incluir o que tem o zero. Contudo estou co duvidas. Se me pudessem esclarecer.
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor MarceloFantini » Sáb Abr 30, 2011 18:26

Editado, explicado abaixo.
Editado pela última vez por MarceloFantini em Sáb Abr 30, 2011 20:29, em um total de 1 vez.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor LuizAquino » Sáb Abr 30, 2011 18:55

Eu gostaria de recomendar que você assista ao vídeo:
04. Cálculo I - Limites e Continuidade
http://www.youtube.com/watch?v=NOPEwktLxgw

Nesse vídeo há exercícios semelhantes a este, porém para funções de apenas uma variável.
Editado pela última vez por LuizAquino em Dom Mai 01, 2011 12:35, em um total de 1 vez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 20:26

Agradeço a vossa ajuda!
Houve uma pessoa que entretanto me disse que para a resolução do problema teria de calcular o limite de x >0 e x < 0 e verificar se ambos sao iguais a zero.
Pelo que entendi tambem se pode resolver assim. Correcto?
Tinha a percepçao de que a continuidade em R era diferente de R2, por estarmos a trabalhar no plano e nao podermos seguir unicamente pela esquerda ou pela direita, devido a existirem varias formas de nos aproximarmos de 0.
Editado pela última vez por AnaOliveira em Sáb Abr 30, 2011 20:33, em um total de 1 vez.
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor LuizAquino » Sáb Abr 30, 2011 20:30

Houve uma pessoa que entretanto me disse que para a resolução do problema teria de calcular o limite de x >0 e x < 0 e verificar se ambos sao iguais a zero.
Pelo que entendi tambem se pode resolver assim. Correcto?
Tinha a percepçao de que a continuidade em R era diferente de R2, por estarmos a trabalhar no plano e nao podermos seguir unicamente pela esquerda ou pela direita, devido a existirem varias formas de nos aproximarmos de 0.


Deve-se analisar todos os caminhos como o colega Fantini disse abaixo.
Editado pela última vez por LuizAquino em Dom Mai 01, 2011 12:38, em um total de 4 vezes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor MarceloFantini » Sáb Abr 30, 2011 20:35

Apaguei minha mensagem pois estava errado. Se não me engano, o limite não deve existir pois o limite do primeiro ramo não existe. Entretanto, isso é uma função de duas variáveis, então tecnicamente deveríamos mostrar por todos os caminhos?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor LuizAquino » Sáb Abr 30, 2011 20:37

MarceloFantini escreveu:Entretanto, isso é uma função de duas variáveis, então tecnicamente deveríamos mostrar por todos os caminhos?

Sim.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 20:41

O primeiro limite existe! Eu provei pela definiçao que existe.! Sendo assim.. fiquei um pouco confusa. :S
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor MarceloFantini » Sáb Abr 30, 2011 20:49

Note que eu disse "se não me engano", e neste caso eu me enganei. *-)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 20:54

Sim sim.. Contudo fiquei na duvida.. Sempre se resolve através da resolução dos dois limites correcto?
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor MarceloFantini » Sáb Abr 30, 2011 21:11

Sim, e os dois existem nesse caso. Como a função está definida em zero também e coincide com os limites, então ela é contínua no ponto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 21:13

Agradeço a ajuda!
:-D
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor NMiguel » Dom Mai 01, 2011 19:35

A função é, de facto, continua em (0,0).

Basta ver que:

\lim_{\left (x,y  \right )\rightarrow \left (0^{+},0  \right )}\left |f(x,y)  \right |=\lim_{\left (x,y  \right )\rightarrow \left (0^{+},0  \right )}\left |\frac{x^3}{x^2+y^2}  \right |\leq \lim_{\left (x,y  \right )\rightarrow \left (0^{+},0  \right )}\left |\frac{(\sqrt{x^2+y^2})^3}{x^2+y^2}  \right |=\lim_{\left (x,y  \right )\rightarrow \left (0^{+},0  \right )}\left |\sqrt{x^2+y^2}  \right |=0



\lim_{\left (x,y  \right )\rightarrow \left (0^{-},0  \right )}f(x,y)=\lim_{\left (x,y  \right )\rightarrow \left (0^{-},0  \right )}x\times ln(1+y^2)=0\times 0=0



f(0,0)=0\times ln(1+0^2)=0
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}