• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida numa funçao definida por ramos

Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 16:54

boa tarde... eu estou cm uma duvida numa funçao definida por ramos que é:

f(x,y) = x^3/(x^2 + y^2) se x > 0 e f(x,y) = x * ln(1+y^2) se x <= 0

Como verifico se a funçao é continua no ponto 0,0
pego no ramo d cima ou d baixo?
Na minha prespectiva deveria incluir o que tem o zero. Contudo estou co duvidas. Se me pudessem esclarecer.
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor MarceloFantini » Sáb Abr 30, 2011 18:26

Editado, explicado abaixo.
Editado pela última vez por MarceloFantini em Sáb Abr 30, 2011 20:29, em um total de 1 vez.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor LuizAquino » Sáb Abr 30, 2011 18:55

Eu gostaria de recomendar que você assista ao vídeo:
04. Cálculo I - Limites e Continuidade
http://www.youtube.com/watch?v=NOPEwktLxgw

Nesse vídeo há exercícios semelhantes a este, porém para funções de apenas uma variável.
Editado pela última vez por LuizAquino em Dom Mai 01, 2011 12:35, em um total de 1 vez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 20:26

Agradeço a vossa ajuda!
Houve uma pessoa que entretanto me disse que para a resolução do problema teria de calcular o limite de x >0 e x < 0 e verificar se ambos sao iguais a zero.
Pelo que entendi tambem se pode resolver assim. Correcto?
Tinha a percepçao de que a continuidade em R era diferente de R2, por estarmos a trabalhar no plano e nao podermos seguir unicamente pela esquerda ou pela direita, devido a existirem varias formas de nos aproximarmos de 0.
Editado pela última vez por AnaOliveira em Sáb Abr 30, 2011 20:33, em um total de 1 vez.
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor LuizAquino » Sáb Abr 30, 2011 20:30

Houve uma pessoa que entretanto me disse que para a resolução do problema teria de calcular o limite de x >0 e x < 0 e verificar se ambos sao iguais a zero.
Pelo que entendi tambem se pode resolver assim. Correcto?
Tinha a percepçao de que a continuidade em R era diferente de R2, por estarmos a trabalhar no plano e nao podermos seguir unicamente pela esquerda ou pela direita, devido a existirem varias formas de nos aproximarmos de 0.


Deve-se analisar todos os caminhos como o colega Fantini disse abaixo.
Editado pela última vez por LuizAquino em Dom Mai 01, 2011 12:38, em um total de 4 vezes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor MarceloFantini » Sáb Abr 30, 2011 20:35

Apaguei minha mensagem pois estava errado. Se não me engano, o limite não deve existir pois o limite do primeiro ramo não existe. Entretanto, isso é uma função de duas variáveis, então tecnicamente deveríamos mostrar por todos os caminhos?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor LuizAquino » Sáb Abr 30, 2011 20:37

MarceloFantini escreveu:Entretanto, isso é uma função de duas variáveis, então tecnicamente deveríamos mostrar por todos os caminhos?

Sim.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 20:41

O primeiro limite existe! Eu provei pela definiçao que existe.! Sendo assim.. fiquei um pouco confusa. :S
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor MarceloFantini » Sáb Abr 30, 2011 20:49

Note que eu disse "se não me engano", e neste caso eu me enganei. *-)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 20:54

Sim sim.. Contudo fiquei na duvida.. Sempre se resolve através da resolução dos dois limites correcto?
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor MarceloFantini » Sáb Abr 30, 2011 21:11

Sim, e os dois existem nesse caso. Como a função está definida em zero também e coincide com os limites, então ela é contínua no ponto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida numa funçao definida por ramos

Mensagempor AnaOliveira » Sáb Abr 30, 2011 21:13

Agradeço a ajuda!
:-D
AnaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 30, 2011 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas e Tecnologias da Informaçao
Andamento: cursando

Re: Duvida numa funçao definida por ramos

Mensagempor NMiguel » Dom Mai 01, 2011 19:35

A função é, de facto, continua em (0,0).

Basta ver que:

\lim_{\left (x,y  \right )\rightarrow \left (0^{+},0  \right )}\left |f(x,y)  \right |=\lim_{\left (x,y  \right )\rightarrow \left (0^{+},0  \right )}\left |\frac{x^3}{x^2+y^2}  \right |\leq \lim_{\left (x,y  \right )\rightarrow \left (0^{+},0  \right )}\left |\frac{(\sqrt{x^2+y^2})^3}{x^2+y^2}  \right |=\lim_{\left (x,y  \right )\rightarrow \left (0^{+},0  \right )}\left |\sqrt{x^2+y^2}  \right |=0



\lim_{\left (x,y  \right )\rightarrow \left (0^{-},0  \right )}f(x,y)=\lim_{\left (x,y  \right )\rightarrow \left (0^{-},0  \right )}x\times ln(1+y^2)=0\times 0=0



f(0,0)=0\times ln(1+0^2)=0
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.