




Houve uma pessoa que entretanto me disse que para a resolução do problema teria de calcular o limite de x >0 e x < 0 e verificar se ambos sao iguais a zero.
Pelo que entendi tambem se pode resolver assim. Correcto?
Tinha a percepçao de que a continuidade em R era diferente de R2, por estarmos a trabalhar no plano e nao podermos seguir unicamente pela esquerda ou pela direita, devido a existirem varias formas de nos aproximarmos de 0.



MarceloFantini escreveu:Entretanto, isso é uma função de duas variáveis, então tecnicamente deveríamos mostrar por todos os caminhos?














Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)