por johnlaw » Ter Abr 19, 2011 14:24
Boa tarde Pessoa, será que alguém me ajuda, estou tentando resolver esse exercício mas não está dando certo..
1) Achar as 3 menores frações possíveis equivalentes a 3/5, 4/7 e 6/11 tais que o denominador da primeira seja igual ao numerador da segunda e o denominador da segunda seja igual ao numerador da terceiro.
2) Qual a fração equivalente a 12/20 e que tem 9 como m.d.c de seus termos.
Valeu hein!
-
johnlaw
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 06, 2010 13:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática Licenciatura
- Andamento: cursando
por NMiguel » Ter Abr 19, 2011 17:57
1) 72/120, 120/210, 210/385
2) 27/45
-
NMiguel
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Ter Abr 19, 2011 17:09
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
-
por johnlaw » Qua Abr 20, 2011 14:28
Na primeira, existe algum método ? ou devo somente olhar as classes de equivalências ?
E na segunda, como chego nesse resultado ?
Obrigado desde já.
-
johnlaw
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 06, 2010 13:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática Licenciatura
- Andamento: cursando
por NMiguel » Qua Abr 20, 2011 19:41
Na primeira existe um método.
Uma vez que temos 3/5, 4/7 e 6/11 que são fracções irredutíveis, como queremos que o numerador da segunda seja igual ao denominador da primeira, e como o máximo divisor comum entre 4 e 5 é 1, para que eles sejam iguais, o numerador da segunda fracção terá de ser multiplicado por um múltiplo de 5 (e a primeira por um múltiplo de 4).
Além disso, como queremos que o denominador da segunda seja igual ao numerador da terceira, e como o máximo divisor comum entre 7 e 6 é 1, para que eles sejam iguais, o numerador da segunda fracção terá de ser multiplicado por um múltiplo de 6 (e a terceira por um múltiplo de 7).
Como o mínimo múltiplo comum entre 5 e 6 é 30, a segunda fracção deve ser multiplicada por 30/30.
Por fim, basta multiplicar cada uma das restantes fracções pelo correspondente termo de forma a que o denominador da primeira seja igual ao numerador da segunda e o denominador da segunda seja igual ao numerador da terceira.
Na segunda, basta transformar a fracção numa fracção irredutível. Assim, o máximo divisor comum entre o numerador e o denominador passa a ser 1. Para que ele passe a ser 9, basta multiplicar a fracção resultante por 9/9.
Espero ter ajudado.
-
NMiguel
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Ter Abr 19, 2011 17:09
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
-
por johnlaw » Sex Abr 22, 2011 13:28
Entendi, ok muito obrigado...
mais uma coisinha... será que é possível resolver isso usando um sistema ?
-
johnlaw
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 06, 2010 13:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática Licenciatura
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Frações Equivalentes
por gustavowelp » Seg Jun 28, 2010 19:16
- 4 Respostas
- 2605 Exibições
- Última mensagem por DanielFerreira

Qua Jun 30, 2010 19:21
Estatística
-
- [frações] Ajuda pra resolver exercicio
por ERICK12 » Seg Jun 09, 2008 02:41
- 1 Respostas
- 10397 Exibições
- Última mensagem por admin

Seg Jun 09, 2008 15:51
Álgebra Elementar
-
- FRAÇÕES COM ARRANJOS - DÚVIDA EM EXERCÍCIO
por amateurfeet » Dom Mar 11, 2012 16:20
- 1 Respostas
- 2206 Exibições
- Última mensagem por LuizAquino

Seg Mar 12, 2012 12:57
Estatística
-
- taxas equivalentes e nominas
por karlinhaa » Seg Nov 22, 2010 14:38
- 1 Respostas
- 1569 Exibições
- Última mensagem por esteban

Sáb Nov 27, 2010 22:34
Matemática Financeira
-
- razões equivalentes, me ajudem!
por zig » Dom Mai 08, 2011 14:02
- 4 Respostas
- 3855 Exibições
- Última mensagem por zig

Ter Mai 10, 2011 08:39
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.