• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analitica (Graduação).

Geometria Analitica (Graduação).

Mensagempor 380625 » Sex Abr 01, 2011 15:58

Boa tarde estou no primeiro ano de graduação e estou tendo a materia Geometria Analitica o professor esta definindo segmento orientado e vetor. Mas para definir isso precisamos saber o que é equipolencia. Entre as definições esta tudo bem entendi bem o que sao segmentos orientados, classe de equipolência e vetores. Porem, não consigo provar e desenhar algumas coisas por exemplo:

1 - (A,B)~(C,D) IMPLICA (A,C)~(B,D) no livro em que estudo ele vez um caso particular dessa proposição no caso em que o quadrilatero ABCD é um paralelog

Após isso ele me faz tres questoes

Faça um desenho ilustrando a proposição 1 em que ABCD sao colineares.

Prove que (A,B)~(C,D) IMPLICA (B,A)~(D,C)

Prove que (A,B)~(C,D) IMPLICA (C,A)~(D,B).

Gostaria de dicas pois sei que é meio abstraro algumas coisas ainda mais quando estamos começando G.A.

Grato Flávio Santana
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Geometria Analitica (Graduação).

Mensagempor LuizAquino » Sex Abr 01, 2011 17:25

Dicas

380625 escreveu:Faça um desenho ilustrando a proposição 1 em que ABCD sao colineares.

Lembre-se que "colineares" significa que os pontos estão sobre uma mesma reta.

380625 escreveu:Prove que (A,B)~(C,D) IMPLICA (B,A)~(D,C)

Lembre-se que (A, B) é um segmento orientado com mesma direção, magnitude e sentido contrário a (B, A).

380625 escreveu:Prove que (A,B)~(C,D) IMPLICA (C,A)~(D,B).

Lembre-se do paralelogramo ABCD.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Geometria Analitica (Graduação).

Mensagempor 0 kelvin » Sáb Abr 02, 2011 00:10

Estou recebendo esses mesmos exercícios para resolver :-P

Do que entendi por enquanto foi que precisa prestar atenção na definição que tem no livro, mas não apenas na descrição, principalmente na parte que utiliza os símbolos, a notação matemática dos vetores.

Tambem senti que vetores são abstratos, talvez fiquem mais claros quando começarem a ser usados na física mesmo.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Geometria Analitica (Graduação).

Mensagempor MarceloFantini » Sáb Abr 02, 2011 01:04

Vetores ficarão mais claros quando estudarem Álgebra Linear. Quanto antes vocês destituírem-se da idéia de vetor como apenas uma flecha, melhor.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Analitica (Graduação).

Mensagempor 380625 » Dom Abr 03, 2011 12:32

Esse exercicio eu consegui resolver:

Prove que (A,B)~(P,Q) e (C,D)~(P,Q) IMPLICA (A,B)~(C,D):

No exercicio acima eu usei a propriedade simetrica e depois a transitiva e consegui resolver.


Então o que ta dificil para mim é:

Prove que (A,B)~(C,D)~IMPLICA(B,A)~(D,C), pois não consigo relacionar esse exercicio com as propriedades simetrica e transitiva.

Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Geometria Analitica (Graduação).

Mensagempor LuizAquino » Dom Abr 03, 2011 12:55

(A,\,B)\sim (C,\,D) \Rightarrow (B,\,A)\sim(D,\,C)

Temos que (A, B) e (C, D) são tais que possuem:
  • magnitude: m
  • direção: d
  • sentido: s

Sabemos que (B, A) possui:
  • magnitude: m
  • direção: d
  • sentido: -s (isto é, o sentido contrário de (A, B)).

Além disso, sabemos que (D, C) possui:
  • magnitude: m
  • direção: d
  • sentido: -s (isto é, o sentido contrário de (C, D)).

Portanto, (B, A) e (D, C) são equipolentes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}