• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com radicais

Limite com radicais

Mensagempor valeuleo » Qui Mar 31, 2011 08:46

Já tentei usar todas as regras demonstradas pelo professor mas não estou conseguindo chegar ao fim deste problema. Alguém pode me ajudar? Grato

\lim_{x\to1} \frac{\sqrt[4]{x} + \sqrt[3]{x} + \sqrt[]{x} - 3} {x - 1}

O método que o Prof. quer que usemos é o de mudança de variável, onde cálculamos o m.m.c dos índices dos radicais.
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Limite com radicais

Mensagempor LuizAquino » Qui Mar 31, 2011 10:44

Fazendo a substituição u^{12}=x, temos que:

\lim_{x\to1} \frac{\sqrt[4]{x} + \sqrt[3]{x} + \sqrt[]{x} - 3} {x - 1} \Rightarrow \lim_{u \to 1} \frac{u^6 + u^4 + u^3 - 3} {u^{12} - 1}

Provavelmente, a sua dificuldade está em realizar a divisão entre os polinômios. Recomendo que estude o assunto [1, 2].

Nesse caso, a divisão de u^6 + u^4 + u^3 - 3 por u-1 resulta em quociente u^5+u^4+2u^3+3u^2+3u+3 e resto 0. Ou seja, temos que:

u^6 + u^4 + u^3 - 3 = (u^5+u^4+2u^3+3u^2+3u+3)(u-1) + 0

Agora, tente terminar o exercício.

Referência
[1] Divisão de polinômios - Brasil Escola - http://www.brasilescola.com/matematica/ ... nomios.htm
[2] Briot Ruffini - http://www.youtube.com/watch?v=yv5ju6Q81dM
Editado pela última vez por LuizAquino em Qui Mar 31, 2011 11:43, em um total de 3 vezes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite com radicais

Mensagempor valeuleo » Qui Mar 31, 2011 11:18

LuizAquino escreveu:Fazendo a substituição u^{12}=x, temos que:

\lim_{x\to1} \frac{\sqrt[4]{x} + \sqrt[3]{x} + \sqrt[]{x} - 3} {x - 1} \Rightarrow \lim_{u \to 1} \frac{u^6 + u^4 + u^3 - 3} {u - 1}

Provavelmente, a sua dificuldade está em realizar a divisão entre os polinômios. Recomendo que estude o assunto [1, 2].

Nesse caso, a divisão entre esses polinômios resulta em quociente u^5+u^4+2u^3+3u^2+3u+3 e resto 0. Ou seja, temos que:
u^6 + u^4 + u^3 - 3 = (u^5+u^4+2u^3+3u^2+3u+3)(u-1) + 0

Referência
[1] Divisão de polinômios - Brasil Escola - http://www.brasilescola.com/matematica/ ... nomios.htm
[2] Briot Ruffini - http://www.youtube.com/watch?v=yv5ju6Q81dM


Na verdade não é pra desenvolver a divisão, mas sim obter o valor. A resposta é \frac{13}{12}, mas ainda não consegui resolver.
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Limite com radicais

Mensagempor LuizAquino » Qui Mar 31, 2011 11:41

valeuleo escreveu:Na verdade não é pra desenvolver a divisão, mas sim obter o valor.

Você precisa saber aplicar a divisão para conseguir eliminar a indeterminação.


\lim_{u \to 1} \frac{u^6 + u^4 + u^3 - 3} {u^{12} - 1} = \lim_{u \to 1} \frac{(u-1)(u^5+u^4+2u^3+3u^2+3u+3)} {(u-1)(u^{11} + u^{10} + u^9 + u^8 + u^7 + u^6 + u^5 + u^4 + u^3 + u^2 + u + 1
)}

= \lim_{u \to 1} \frac{u^5+u^4+2u^3+3u^2+3u+3} {u^{11} + u^{10} + u^9 + u^8 + u^7 + u^6 + u^5 + u^4 + u^3 + u^2 + u + 1}

= \frac{13}{12}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}