• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com radicais

Limite com radicais

Mensagempor valeuleo » Qui Mar 31, 2011 08:46

Já tentei usar todas as regras demonstradas pelo professor mas não estou conseguindo chegar ao fim deste problema. Alguém pode me ajudar? Grato

\lim_{x\to1} \frac{\sqrt[4]{x} + \sqrt[3]{x} + \sqrt[]{x} - 3} {x - 1}

O método que o Prof. quer que usemos é o de mudança de variável, onde cálculamos o m.m.c dos índices dos radicais.
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Limite com radicais

Mensagempor LuizAquino » Qui Mar 31, 2011 10:44

Fazendo a substituição u^{12}=x, temos que:

\lim_{x\to1} \frac{\sqrt[4]{x} + \sqrt[3]{x} + \sqrt[]{x} - 3} {x - 1} \Rightarrow \lim_{u \to 1} \frac{u^6 + u^4 + u^3 - 3} {u^{12} - 1}

Provavelmente, a sua dificuldade está em realizar a divisão entre os polinômios. Recomendo que estude o assunto [1, 2].

Nesse caso, a divisão de u^6 + u^4 + u^3 - 3 por u-1 resulta em quociente u^5+u^4+2u^3+3u^2+3u+3 e resto 0. Ou seja, temos que:

u^6 + u^4 + u^3 - 3 = (u^5+u^4+2u^3+3u^2+3u+3)(u-1) + 0

Agora, tente terminar o exercício.

Referência
[1] Divisão de polinômios - Brasil Escola - http://www.brasilescola.com/matematica/ ... nomios.htm
[2] Briot Ruffini - http://www.youtube.com/watch?v=yv5ju6Q81dM
Editado pela última vez por LuizAquino em Qui Mar 31, 2011 11:43, em um total de 3 vezes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite com radicais

Mensagempor valeuleo » Qui Mar 31, 2011 11:18

LuizAquino escreveu:Fazendo a substituição u^{12}=x, temos que:

\lim_{x\to1} \frac{\sqrt[4]{x} + \sqrt[3]{x} + \sqrt[]{x} - 3} {x - 1} \Rightarrow \lim_{u \to 1} \frac{u^6 + u^4 + u^3 - 3} {u - 1}

Provavelmente, a sua dificuldade está em realizar a divisão entre os polinômios. Recomendo que estude o assunto [1, 2].

Nesse caso, a divisão entre esses polinômios resulta em quociente u^5+u^4+2u^3+3u^2+3u+3 e resto 0. Ou seja, temos que:
u^6 + u^4 + u^3 - 3 = (u^5+u^4+2u^3+3u^2+3u+3)(u-1) + 0

Referência
[1] Divisão de polinômios - Brasil Escola - http://www.brasilescola.com/matematica/ ... nomios.htm
[2] Briot Ruffini - http://www.youtube.com/watch?v=yv5ju6Q81dM


Na verdade não é pra desenvolver a divisão, mas sim obter o valor. A resposta é \frac{13}{12}, mas ainda não consegui resolver.
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Limite com radicais

Mensagempor LuizAquino » Qui Mar 31, 2011 11:41

valeuleo escreveu:Na verdade não é pra desenvolver a divisão, mas sim obter o valor.

Você precisa saber aplicar a divisão para conseguir eliminar a indeterminação.


\lim_{u \to 1} \frac{u^6 + u^4 + u^3 - 3} {u^{12} - 1} = \lim_{u \to 1} \frac{(u-1)(u^5+u^4+2u^3+3u^2+3u+3)} {(u-1)(u^{11} + u^{10} + u^9 + u^8 + u^7 + u^6 + u^5 + u^4 + u^3 + u^2 + u + 1
)}

= \lim_{u \to 1} \frac{u^5+u^4+2u^3+3u^2+3u+3} {u^{11} + u^{10} + u^9 + u^8 + u^7 + u^6 + u^5 + u^4 + u^3 + u^2 + u + 1}

= \frac{13}{12}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: