• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão da Fuvest

Questão da Fuvest

Mensagempor my2009 » Qua Mar 30, 2011 10:00

Seja n um número inteiro, n\geq 0.

a) Calcule de quantas maneiras distintas n bolas idênticas podem ser distribuídas entre Luís e Antônio.

b) Calcule de quantas maneiras distintas n bolas idênticas podem ser distribuídas entre Pedro,Luís e Antônio.

Por favor, quem for resolver me explique o porquê do ( n+1) .... que foi o q eu não entendi..

Obrigada !
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da Fuvest

Mensagempor FilipeCaceres » Qua Mar 30, 2011 10:31

Oi My,
Procure por número de soluções inteiras e não negativas de uma equação linear para obter mais informações e aprender como se resolve esses tipos de questões.
Ex.:
Considere a equação linear a seguir:
x_1 + x_2 + ... + x_n = p, ondep\epsilon  N (N = conjunto dos números naturais).

C_p^{n+p-1} = \frac{(n+p-1)!}{p!.(n-1)!}


Voltando para a questão.
A) Seja x o número de bolas recebidas por Luís e y o número de bolas recebidas por Antônio. Do enunciado temos a equação x + y = n.
Logo temos,

C_n^{2+n-1} =C_n^{n+1} =\frac{(n+1)!}{n!.(n+1-n)!}=\frac{(n+1)!}{n!}
C_n^{n+1} =\frac{(n+1)!}{n!}=\frac{(n+1).n!}{n!}=n+1

C_n^{n+1} = n+1

B)Sendo z o número de bolas recebidas por Pedro, temos a equação x + y + z = n.
Use o mesmo raciocínio anterior e tente fazer esta, qualquer dúvida pergunte.

Espero ter ajudado.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Questão da Fuvest

Mensagempor my2009 » Qua Mar 30, 2011 10:38

Olá Felipe, tudo bem com vc?
Então.. ainda não entendi... pq ( n+1 ) ?

aqui na resolução Ele utiliza P ao invés de C .... poderia tmb utlizar a permutação para resolver essa questão ?
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da Fuvest

Mensagempor my2009 » Qua Mar 30, 2011 10:40

rsrsrsrs ha ta ja entendi... =p :oops: obrigada
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da Fuvest

Mensagempor FilipeCaceres » Qua Mar 30, 2011 11:18

Que bom que você entendeu, mas só para complementar, poderia ser utilizado permutação sem problema nenhum, observe que:
C_n^{2+n-1} =C_n^{n+1} =\frac{(n+1)!}{n!}=P_{n+1}^n

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}