por my2009 » Qua Mar 30, 2011 10:00
Seja n um número inteiro, n

0.
a) Calcule de quantas maneiras distintas n bolas idênticas podem ser distribuídas entre Luís e Antônio.
b) Calcule de quantas maneiras distintas n bolas idênticas podem ser distribuídas entre Pedro,Luís e Antônio.
Por favor, quem for resolver me explique o porquê do ( n+1) .... que foi o q eu não entendi..
Obrigada !
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por FilipeCaceres » Qua Mar 30, 2011 10:31
Oi My,
Procure por número de soluções inteiras e não negativas de uma equação linear para obter mais informações e aprender como se resolve esses tipos de questões.
Ex.:
Considere a equação linear a seguir:

, onde

(N = conjunto dos números naturais).

Voltando para a questão.
A) Seja x o número de bolas recebidas por Luís e y o número de bolas recebidas por Antônio. Do enunciado temos a equação x + y = n.
Logo temos,



B)Sendo z o número de bolas recebidas por Pedro, temos a equação x + y + z = n.
Use o mesmo raciocínio anterior e tente fazer esta, qualquer dúvida pergunte.
Espero ter ajudado.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por my2009 » Qua Mar 30, 2011 10:38
Olá Felipe, tudo bem com vc?
Então.. ainda não entendi... pq ( n+1 ) ?
aqui na resolução Ele utiliza P ao invés de C .... poderia tmb utlizar a permutação para resolver essa questão ?
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por my2009 » Qua Mar 30, 2011 10:40
rsrsrsrs ha ta ja entendi... =p

obrigada
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por FilipeCaceres » Qua Mar 30, 2011 11:18
Que bom que você entendeu, mas só para complementar, poderia ser utilizado permutação sem problema nenhum, observe que:

Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão da Fuvest
por Kelvin Brayan » Qua Mar 02, 2011 11:56
- 2 Respostas
- 4133 Exibições
- Última mensagem por Kelvin Brayan

Qua Mar 02, 2011 13:23
Álgebra Elementar
-
- Questão Fuvest
por Alex Rom » Qua Mar 30, 2011 11:38
- 2 Respostas
- 3622 Exibições
- Última mensagem por Alex Rom

Qua Mar 30, 2011 12:07
Geometria Plana
-
- Questão da Fuvest
por Kelvin Brayan » Seg Abr 18, 2011 17:11
- 2 Respostas
- 1724 Exibições
- Última mensagem por Kelvin Brayan

Ter Abr 19, 2011 12:57
Álgebra Elementar
-
- Questão FUVEST
por Guilherme Carvalho » Ter Mai 10, 2011 17:19
- 5 Respostas
- 2882 Exibições
- Última mensagem por carlosalesouza

Sex Mai 13, 2011 15:50
Logaritmos
-
- Questão FUVEST
por LuRodrigues » Seg Abr 23, 2012 13:26
- 1 Respostas
- 1219 Exibições
- Última mensagem por Fabiano Vieira

Seg Abr 23, 2012 19:30
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.