• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova concurso (volume)

Questão prova concurso (volume)

Mensagempor fernandocez » Qui Mar 24, 2011 11:54

Pessoal mais uma. Essa eu fiz crente que tava indo bem, me deparei com um zero que acabou com a graça.
49) Um engenheiro vai projetar uma piscina em forma de paralelepípedo reto retângulo, cujas medidas internas são, em metros, expressas por x, x - 20 e 2. O maior volume que essa piscina poderá ter, em metros cúbicos, é:
resp: 200

Eu fiz assim:
V = 2x(x - 20)
2x² - 40x = 0
x = 0 ou
2x - 40 = 0
x = 20
Mas se x = 20 um dos lados é x - 20 que vai zerar.
Fiz pela opção (200) também deu raízes = 20 (delta = 0). Aonde errei?
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (volume)

Mensagempor LuizAquino » Qui Mar 24, 2011 12:31

Analisando todos os seus tópicos, é fácil perceber que você tem a mania de igualar tudo que vê pela frente a zero! *-)

Se V(x) é o volume em função da medida x, então V(x)=0 seria a medida x que faz o volume ser zero, o que não é o desejado.

O que se quer é: qual é o valor máximo da função V(x)?

Aproveito para perguntar se as medidas no texto do exercício não seriam x, 20-x e 2 ? Se fossem essas medidas, você quer o máximo que a função V(x) = -2x^2+40x pode assumir.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (volume)

Mensagempor fernandocez » Qui Mar 24, 2011 12:41

LuizAquino escreveu:Analisando todos os seus tópicos, é fácil perceber que você tem a mania de igualar tudo que vê pela frente a zero! *-)

Se V(x) é o volume em função da medida x, então V(x)=0 seria a medida x que faz o volume ser zero, o que não é o desejado.

O que se quer é: qual é o valor máximo da função V(x)?

Aproveito para perguntar se as medidas no texto do exercício não seriam x, 20-x e 2 ? Se fossem essas medidas, você quer o máximo que a função V(x) = -2x^2+40x pode assumir.


O texto: "...expressas por x, x - 20 e 2. O maior volume que essa piscina poderá ter..." eu não sei se essa questão foi anulada.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (volume)

Mensagempor LuizAquino » Qui Mar 24, 2011 14:27

Se as medidas forem realmente x, x-20 e 2, temos que o volume seria V(x) = 2x^2-40x. Note que só faz sentido a medida x estar no intervalo aberto (0, 20). Para x nesse intervalo temos que V(x)<0, mas no contexto não faz sentido um volume negativo.

Desse modo, as medidas deveriam ser x, 20-x e 2. Para essas medidas, o volume seria V(x) = -2x^2+40x, que para x no intervalo (0, 20) é tal que V(x)>0. Além disso, o máximo dessa função seria V(10)=200.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (volume)

Mensagempor fernandocez » Qui Mar 24, 2011 18:51

LuizAquino escreveu:Se as medidas forem realmente x, x-20 e 2, temos que o volume seria V(x) = 2x^2-40x. Note que só faz sentido a medida x estar no intervalo aberto (0, 20). Para x nesse intervalo temos que V(x)<0, mas no contexto não faz sentido um volume negativo.

Desse modo, as medidas deveriam ser x, 20-x e 2. Para essas medidas, o volume seria V(x) = -2x^2+40x, que para x no intervalo (0, 20) é tal que V(x)>0. Além disso, o máximo dessa função seria V(10)=200.


Valeu Luiz, agora ficou claro prá mim. Obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: