• Anúncio Global
    Respostas
    Exibições
    Última mensagem

distancia

distancia

Mensagempor max » Dom Mar 20, 2011 00:41

a questão é o seguinte calcule a distancia d do ponto c = (2,3) a reta AB

bom no livro só mostra como calcular a distancia quando eu tenho o ponto e a equação da reta só que nesse caso acima qual é a equação da reta.....
se alguem pudesse me ajudar ficaria muito grato desde ja agradeço
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: distancia

Mensagempor Dan » Dom Mar 20, 2011 00:53

Max, está faltando dados...
Poderia postar a questão inteira?
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: distancia

Mensagempor max » Dom Mar 20, 2011 01:43

não é isso mesmo calcule a distância d do ponto c = (2,3) a reta AB
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: distancia

Mensagempor Dan » Dom Mar 20, 2011 01:55

Nesse caso você terá que especificar uma reta genérica e calcular a menor distância do ponto até a reta. Simplesmente utilize a forma de equação de reta que você está acostumado, mas de forma genérica e efetue os cálculos.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: distancia

Mensagempor max » Dom Mar 20, 2011 02:24

em não teria como vc demonstrar o calculo para mim pq eu tentei aqui e coloquei a forma generica ax + by + c e coloquei na formula da distancia mais dai num sai dela pq eu num sei o valor nem de a nem de b e nem de c se vc pudesse demonstrar seria muito grato
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: distancia

Mensagempor Dan » Dom Mar 20, 2011 02:35

Exatamente, não há como determinar os valores nem de a, nem de b nem de qualquer outro elemento.

Pela fórmula, o mais distante que podemos ir é:
d = \frac{\left|2a + 3b + c \right|}{\sqrt[]{a+b}}

Onde os números 2 e 3 vem do ponto, e o restante é a própria fórmula de determinação da distância entre reta e ponto.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: distancia

Mensagempor max » Dom Mar 20, 2011 02:39

valeu dan eu tinha chegado ate nessa resposta mesmo mas pensei que estava errado muito obrigado mesmo em
max
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mar 19, 2011 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59