• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão UFMG - função logarítmica

Questão UFMG - função logarítmica

Mensagempor kamillanjb » Qua Mar 09, 2011 20:29

(UFMG) Observe a figura

Nessa figura está representado o gráfico da função
f(x) = log2 1 / (ax + b).
Então, f (1) é igual a:
a) -3
b) -2
c) -1
d) -1/2
e) -1/3

resposta: letra b

Agradeço desde já.
Anexos
ajuda.jpg
figura
ajuda.jpg (5.45 KiB) Exibido 19447 vezes
kamillanjb
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Fev 16, 2011 10:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão UFMG - função logarítmica

Mensagempor Fabricio dalla » Qua Mar 09, 2011 22:04

pow sei fazer n :(,se ele desse outro ponto pelo menos auhsuahusa
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão UFMG - função logarítmica

Mensagempor Pedro123 » Qua Mar 09, 2011 22:54

Camila, sua função deveria ser F(x) = {{Log}_{2}}^{1/(ax + b)} ? se for, ai da certo, faça o seguinte, ele te deu dois pontos, o ponto (0,0) e o ponto(5,-4). Basta substituí-los na função e encontrar os valores A e B.

sendo a função a seguinte, F(x) = {{Log}_{2}}^{1/(ax + b)}, a função equivalente será :
F(x) = {{Log}_{2}}^{1} - {{Log}_{2}}^{(ax + b)} = 0 - {{Log}_{2}}^{(ax + b)} > F(x) = - {{Log}_{2}}^{(ax + b)}

substituindo:
0 = - {{Log}_{2}}^{(a.0 + b)} > 0 = - {{Log}_{2}}^{b} > b = 1

agora achando o A:

F(x) = - {{Log}_{2}}^{(ax + 1)} > -4 = - {{Log}_{2}}^{(a5 + 1)} > {2}^{4} = 5.a + 1 > 16 = 5a + 1 > 15 = 5a > a = 3

Logo a função éF(x) = - {{Log}_{2}}^{(3x + 1)}

F(1) = - {{Log}_{2}}^{(3.1 + 1)} > F(1) = - {{Log}_{2}}^{4} > F(1) = - 2

Ai está a resolução, tente usar o editor de formulas para evitar problemas desse tipo abraços.
qualquer duvida é so perguntar
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: Questão UFMG - função logarítmica

Mensagempor kamillanjb » Qua Mar 09, 2011 23:31

A questão também foi passada para mim, da forma exposta. Eis a razão de não resolvê-la. Muito Obrigada
kamillanjb
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Fev 16, 2011 10:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão UFMG - função logarítmica

Mensagempor Pedro123 » Qua Mar 09, 2011 23:33

ahhhm, sem problemas, pois é tambem dei uma pesquisada e achei algumas nessa formatação. abraços
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: Questão UFMG - função logarítmica

Mensagempor Raissa Dantas » Ter Jul 15, 2014 02:30

Não entendi como fez pra achar o valor de A e B, pode dar mais detalhes, por favor?
Raissa Dantas
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Jun 03, 2014 11:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}