por Abelardo » Seg Mar 07, 2011 04:27
Seja f uma função definida para todo x real, satisfazendo as condições:

a)

b)

c)

d)

e)

-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Renato_RJ » Seg Mar 07, 2011 06:36
Grande Abelardo.. Quanto tempo hein ?!
Bem, chega de piadinhas de madrugada e vamos ao que interessa !!
Seguinte, posso ter errado em algo, mas eu acho que é o seguinte, se f(3) = 2 e sabendo que f(x+3) = f(x) * f(3), podemos concluir o seguinte:

Mas f(3) = 2, logo:

Seguindo a lógica, teremos:




Perceba que há um padrão, que é a potência de 2, veja:






Então, podemos supor que

.
Acredito eu que a sua resposta seja a letra c..
[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Abelardo » Seg Mar 07, 2011 12:31
Super certo, só a galera mesmo hein!
Lembra-se da questão sobre a prova da existência de um número racional entre r1 e r2?
viewtopic.php?f=106&t=3992Não achei a prova de Cantor.. poderias falar, ou melhor, apresentar o raciocínio?
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Seg Mar 07, 2011 13:36
Renato, sou contra seu argumento de indução. Você avaliou o crescimento para um lado, o que não necessariamente implica o mesmo para o outro.

![f(-3+3)=f(-3)f(3) \therefore f(0) = f(-3)f(3) \Rightarrow f(-3) = [f(3)]^{-1} = \frac{1}{2} f(-3+3)=f(-3)f(3) \therefore f(0) = f(-3)f(3) \Rightarrow f(-3) = [f(3)]^{-1} = \frac{1}{2}](/latexrender/pictures/74e6d1b6e02774f2b1db4a78aeef6ce7.png)
Isso me dá mais segurança na resposta do que "supor" que a tendência é a mesma no outro sentido.
Abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Renato_RJ » Seg Mar 07, 2011 15:13
Fantini, você tem razão, supor é muito forte, mas como eu tinha visto um padrão me senti seguro na suposição... Abelardo, o Fantini postou uma resposta mais rápida e elegante, sugiro que a estude (como acabei de fazer.. hehehe... Também tenho o direito de aprender com os meus erros, não ?! ).
[ ]'s
Renato
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lógica - OBM de 1997 (2)
por Abelardo » Seg Mar 07, 2011 04:38
- 0 Respostas
- 583 Exibições
- Última mensagem por Abelardo

Seg Mar 07, 2011 04:38
Álgebra Elementar
-
- Lógica - OBM de 1997 (3)
por Abelardo » Seg Mar 07, 2011 04:41
- 1 Respostas
- 1032 Exibições
- Última mensagem por Abelardo

Seg Mar 07, 2011 04:55
Álgebra Elementar
-
- Lógica - OBM de 1997 (4)
por Abelardo » Seg Mar 07, 2011 04:50
- 1 Respostas
- 916 Exibições
- Última mensagem por Adriano Tavares

Seg Mar 14, 2011 22:48
Álgebra Elementar
-
- [números complexos] (fuvest 1997)
por JKS » Dom Set 23, 2012 01:35
- 1 Respostas
- 1369 Exibições
- Última mensagem por young_jedi

Dom Set 23, 2012 14:00
Números Complexos
-
- [LÓGICA] simplificação lógica e leis de equivalência
por MatheusComp606 » Qua Ago 24, 2016 16:13
- 1 Respostas
- 5377 Exibições
- Última mensagem por adauto martins

Seg Ago 29, 2016 15:34
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.