• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão da UERJ sobre função do 1º grau

Questão da UERJ sobre função do 1º grau

Mensagempor kamillanjb » Qua Fev 16, 2011 19:47

(UERJ)

Observe a figura 1 que representa um leitor de áudio na posição de início de leitura.Os suportes
circulares A e B têm 1 cm de raio e uma fita de 90 m está totalmente enrolada em A formando uma
coroa circular de espessura 1,5 cm. A leitura da fita é feita pela peça C a uma velocidade constante.
À medida que a fita passa, nos suportes A e B, formam-se duas coroas circulares com raios maiores x
e y, respectivamente, como sugere a figura abaixo.
A . Esboce o gráfico que mostra o comprimento da fita enrolada em A, em função do tempo de leitura.
B. Calcule y em função de x.

(detalhe...eu n consigo ver os dados nessa questão, para mim esta faltando algo! Me ajudem, por favor!)
Resposta: b)\sqrt[2]{7,5-x²}, 1<=x<=2.5
Anexos
apagar.jpg
apagar.jpg (8.76 KiB) Exibido 6239 vezes
kamillanjb
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Fev 16, 2011 10:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da UERJ sobre função do 1º grau

Mensagempor gustavoluiss » Dom Fev 27, 2011 01:02

alguém dá uma luz nessa questão ai também
gustavoluiss
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 118
Registrado em: Ter Nov 23, 2010 15:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Questão da UERJ sobre função do 1º grau

Mensagempor Fabricio dalla » Dom Fev 27, 2011 11:42

agradeço se alguem resolve-la tbm muito boa!
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da UERJ sobre função do 1º grau

Mensagempor LuizAquino » Dom Fev 27, 2011 17:25

(A) Considere que a velocidade (constante) de leitura seja c (dada em metros/segundo, por exemplo). Sendo assim, após t segundos nós teremos (90-ct) metros de fita enrolados no suporte A. Isto é, a função que fornece a quantidade de fita enrolada em A após t segundos, será dada por f(t)=90-ct. O gráfico para essa função está ilustrado abaixo.
grafico-tempo-metro.png
grafico-tempo-metro.png (6.01 KiB) Exibido 6191 vezes


(B) A medida que o tempo passa, a coroa circular em A diminui a sua área. Já a coroa circular em B aumenta a sua área. A área que é perdida em A é acrescentada em B. Além disso, quando o suporte A está "cheio" temos que x=2,5, mas quando ele está "vazio" temos que x=1. Sendo assim, para 1 \leq x \leq 2,5 teremos a equação:
2,5^2\pi -  x^2\pi = y^2\pi - 1^2\pi

Desse equação, obtemos que y = \sqrt{7,25 - x^2} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão da UERJ sobre função do 1º grau

Mensagempor Fabricio dalla » Dom Fev 27, 2011 17:35

obrigado luizaquino,aprendi muito msm com a resoluçao dessa questão
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da UERJ sobre função do 1º grau

Mensagempor Fabricio dalla » Dom Fev 27, 2011 17:54

eu n tenho q incluir o raio de 1cm de y n ? aquele -1.pi q dizer q y ja vem com o raio de 1cm da polia ai subtrai?
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão da UERJ sobre função do 1º grau

Mensagempor LuizAquino » Dom Fev 27, 2011 18:43

Fabricio dalla escreveu:eu n tenho q incluir o raio de 1cm de y n ? aquele -1.pi q dizer q y ja vem com o raio de 1cm da polia ai subtrai?

No início, o suporte B está "vazio" e portanto y=1. Com o passar do tempo, vai aparecendo a coroa circular de raio maior y e raio menor 1.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão da UERJ sobre função do 1º grau

Mensagempor kamillanjb » Dom Fev 27, 2011 20:10

Pouxa, muito boa a resolução.
Já estava me levando a crer que não havia resposta ou modo de resolvê-la.
Muito Obrigada mesmo!!
kamillanjb
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Fev 16, 2011 10:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D