• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Numeros primos mutlipos e divisiros 24

Numeros primos mutlipos e divisiros 24

Mensagempor Raphael Feitas10 » Sex Fev 25, 2011 01:17

Calcule n,de modo que o inteiro positivo da forma 28x{25}^{n}admita 54 divisores.R:4

Brother tentei mas nem conseguei me ajuda por favor...
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Numeros primos mutlipos e divisiros 24

Mensagempor Raphael Feitas10 » Sex Fev 25, 2011 01:21

Calcule n,de modo que o inteiro positivo da forma 28x{25}^{n} admita 54 divisores.R:4


Me ajuda aew brother e a questão de cima eu postei errado desculpa a certa é essa...
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Numeros primos mutlipos e divisiros 24

Mensagempor Renato_RJ » Sex Fev 25, 2011 03:00

Boa noite campeão, vamos ver se posso lhe ajudar...

Para saber quantos divisores esse número tem, devemos fatorá-lo, então teremos:

28 = 2^2 \cdot 7

25^n = 5^{2n}

Veja que os dois números foram decompostos em números primos, um com expoente 2 ( 2^2 ), um com expoente 1 ( 7^1 ) e o outro com 2n ( 5^{2n} ), então vamos somar 1 (pois temos que "contar" o expoente 0) a cada expoente e depois multiplicar o resultado, assim obteremos o número total de divisores:

(2+1) \cdot (1+1) \cdot (2n + 1) = 54 \Rightarrow \, 12n + 6 = 54 \Rightarrow \, 12n = 48 \Rightarrow \, n = 4

Espero ter ajudado !!!

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Numeros primos mutlipos e divisiros 24

Mensagempor Raphael Feitas10 » Sex Fev 25, 2011 14:20

Brother muito obrg por ter tirado essa minha duvida valeu mesmo...
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Numeros primos mutlipos e divisiros 24

Mensagempor Renato_RJ » Sex Fev 25, 2011 14:50

:y:
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.