• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Numeros primos mutlipos e divisiros 24

Numeros primos mutlipos e divisiros 24

Mensagempor Raphael Feitas10 » Sex Fev 25, 2011 01:17

Calcule n,de modo que o inteiro positivo da forma 28x{25}^{n}admita 54 divisores.R:4

Brother tentei mas nem conseguei me ajuda por favor...
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Numeros primos mutlipos e divisiros 24

Mensagempor Raphael Feitas10 » Sex Fev 25, 2011 01:21

Calcule n,de modo que o inteiro positivo da forma 28x{25}^{n} admita 54 divisores.R:4


Me ajuda aew brother e a questão de cima eu postei errado desculpa a certa é essa...
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Numeros primos mutlipos e divisiros 24

Mensagempor Renato_RJ » Sex Fev 25, 2011 03:00

Boa noite campeão, vamos ver se posso lhe ajudar...

Para saber quantos divisores esse número tem, devemos fatorá-lo, então teremos:

28 = 2^2 \cdot 7

25^n = 5^{2n}

Veja que os dois números foram decompostos em números primos, um com expoente 2 ( 2^2 ), um com expoente 1 ( 7^1 ) e o outro com 2n ( 5^{2n} ), então vamos somar 1 (pois temos que "contar" o expoente 0) a cada expoente e depois multiplicar o resultado, assim obteremos o número total de divisores:

(2+1) \cdot (1+1) \cdot (2n + 1) = 54 \Rightarrow \, 12n + 6 = 54 \Rightarrow \, 12n = 48 \Rightarrow \, n = 4

Espero ter ajudado !!!

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Numeros primos mutlipos e divisiros 24

Mensagempor Raphael Feitas10 » Sex Fev 25, 2011 14:20

Brother muito obrg por ter tirado essa minha duvida valeu mesmo...
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Numeros primos mutlipos e divisiros 24

Mensagempor Renato_RJ » Sex Fev 25, 2011 14:50

:y:
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.