• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Diferencial.

Equação Diferencial.

Mensagempor Higor » Seg Fev 21, 2011 13:12

Boa Tarde Galera.

Estou com uma ED simples mas estou com uma duvida.

\frac{dy}{dx}= \frac{y}{x}

no caso troco o dx de lugar com o y e temos:

\frac{dy}{y}= \frac{dx}{x}

passo a integral dos dois lados

\int_{}^{} \frac{dy}{y} = \int_{}^{} \frac{dx}{x}

ai ficara

ln (y) = ln (x) + C

ai passo o e dos dois lados:

e elevado a ln y = e elevado a ln de x + o C

nesse caso ficaria

y = x + C

como C é constante posso substituir por A

y= x + A

só que ai que vem minha duvida, a reposta correta
é y= x.A

alguem pode me explicar o porque ??? obrigado
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Equação Diferencial.

Mensagempor Molina » Seg Fev 21, 2011 13:53

Boa tarde, Higor.

Você fez certo até aqui:

Higor escreveu:e elevado a ln y = e elevado a ln de x + o C

nesse caso ficaria


Veja a continuação:

e^{lny} = e^{lnx + C}

Pela propriedade de exponencial, temos que:

z^a*z^b=z^{a+b}

Foi isso que você se confundiu no lado direito. Com isso:

y = e^{ln  x} * e^{C}

y = x * e^{C}

Tomando e^{C}=A concluimos que:

y = x * A


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equação Diferencial.

Mensagempor Higor » Seg Fev 21, 2011 14:25

Molina muito obrigado pela ajuda.

Meu professor disse da seguinte maneira:

antes de fazer como voce fez :

e^ln y = e^ln(x+C)

ele sugeriu que

fosse feito assim:

e^ln y = e^ln x + ln e^C

ai como vc disse e ele tambem

multiplicação de base igual soma os expoentes e repete a base
e nesse caso
foi multiplicado os expoentes

ai chegou nessa resposta.

Essa passagem que ele faz antes chamando o C de ln e^C esta correto ???
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Equação Diferencial.

Mensagempor Molina » Seg Fev 21, 2011 14:39

Você está dizendo que daqui:

ln (y) = ln (x) + C

ele veio para cá:


e^{ln (y)} = e^{ln (x)} + e^{C}

???

Se for isso, essa passagem está errada, pois para usar a propriedade exponencial, precisa haver uma multiplicação (e não uma soma, como há ali). Desta forma como está colocado aqui em cima, vamos chegar no resultado que você chegou primeiramente, onde o A está somando o x, e não multiplicando, como é a resposta correta.

Percebeu a diferença? O correto é elevar os dois lados da igualdade a base e e desta forma, pela propriedade exponencial o lado direito fica com uma soma de expoentes que posteriormente abrimos na multiplicação das bases:

ln (y) = ln (x) + C

e^{ln (y)} = e^{ln (x) + C}

e^{ln (y)} = e^{ln (x)} * e^C

y = x*A

Caso não tenha ficado claro, avise.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equação Diferencial.

Mensagempor Higor » Seg Fev 21, 2011 14:46

Molina mais uma vez obrigado.

Ficou muito claro, entendi certinho..

:y:
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?